Existence Results for Nonlinear Multiorder Fractional Differential Equations with Integral and Antiperiodic Boundary Conditions
In this paper, we study the solvability of a class of nonlinear multiorder Caputo fractional differential equations with integral and antiperiodic boundary conditions. By using some fixed point theorems including the Banach contraction mapping principle and Schaefer’s fixed point theorem, we obtain...
Saved in:
Main Authors: | HuiChol Choi, YongSim Sin, KumSong Jong |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2020/1212040 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Existence Results for a Class of p-Laplacian Fractional Differential Equations with Integral Boundary Conditions
by: SunAe Pak, et al.
Published: (2020-01-01) -
Existence and Uniqueness Results for a Class of Singular Fractional Boundary Value Problems with the p-Laplacian Operator via the Upper and Lower Solutions Approach
by: KumSong Jong, et al.
Published: (2020-01-01) -
Existence and Uniqueness Results for a Coupled System of Nonlinear Fractional Differential Equations with Antiperiodic Boundary Conditions
by: Huina Zhang, et al.
Published: (2014-01-01) -
Some Properties of Solutions to Multiterm Fractional Boundary Value Problems with p-Laplacian Operator
by: KumSong Jong, et al.
Published: (2021-01-01) -
Existence Theory for q-Antiperiodic Boundary Value Problems of Sequential q-Fractional Integrodifferential Equations
by: Ravi P. Agarwal, et al.
Published: (2014-01-01)