Modeling of winter wheat yield prediction based on solar-induced chlorophyll fluorescence by machine learning methods
Timely and accurate prediction of large-scale crop yields is critical for national food security. Solar-induced chlorophyll fluorescence (SIF), an indicator of photosynthesis, has emerged as a promising predictor of crop yields. However, it remains unclear to what extent satellite-based SIF data can...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2025-12-01
|
Series: | European Journal of Remote Sensing |
Subjects: | |
Online Access: | https://www.tandfonline.com/doi/10.1080/22797254.2025.2455940 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!