Collaborative Strategies and Simulation of Vehicle Group Behaviors for Off-Ramp Areas
With the increase of vehicle ownership and the rapid growth of urban traffic, the problem of congestion in the off-ramp area of the main expressway has become the main factor restricting overall section efficiency and inducing traffic accidents. This paper focuses on the problem of group collaborati...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2020-01-01
|
| Series: | Journal of Advanced Transportation |
| Online Access: | http://dx.doi.org/10.1155/2020/8817364 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | With the increase of vehicle ownership and the rapid growth of urban traffic, the problem of congestion in the off-ramp area of the main expressway has become the main factor restricting overall section efficiency and inducing traffic accidents. This paper focuses on the problem of group collaborative lane-changing behaviors of off-ramp vehicles and through vehicles in off-ramp areas and proposes four kinds of vehicle group collaborative strategies based on different road space balance conditions. According to a three-lane expressway scene, a VISSIM-based simulation model is built and the optimization scheme is simulated and evaluated. The simulation results show that with the increase of traffic flow in off-ramp areas, a flow-balance strategy for downstream lanes where off-ramp vehicles merge with the outside lane in advance is more advantageous. When vehicles are leaving the main road, if traffic flow is heavy, the flow-balance strategy for lanes where off-ramp vehicles merge with the outside lane in advance (for example, the proportion of off-ramp vehicles in three lanes is 0 : 0 : 1) is better; otherwise, when the traffic flow on the main road is relatively small, the flow-balance strategy for lanes where off-ramp vehicles are distributed in lanes with different ratios (e.g., 1 : 3 : 6) is better. What is more, for future traffic management in connected vehicle environments, it can be concluded that collaborative vehicle lane-changing strategies with different traffic flow states can help to enhance traffic efficiency. |
|---|---|
| ISSN: | 0197-6729 2042-3195 |