New Bounds on the Triple Roman Domination Number of Graphs

In this paper, we derive sharp upper and lower bounds on the sum γ3RG+γ3RG¯ and product γ3RGγ3RG¯, where G¯ is the complement of graph G. We also show that for each tree T of order n≥2, γ3RT≤3n+sT/2 and γ3RT≥⌈4nT+2−ℓT/3⌉, where sT and ℓT are the number of support vertices and leaves of T....

Full description

Saved in:
Bibliographic Details
Main Authors: M. Hajjari, H. Abdollahzadeh Ahangar, R. Khoeilar, Z. Shao, S. M. Sheikholeslami
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Journal of Mathematics
Online Access:http://dx.doi.org/10.1155/2022/9992618
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832548232765374464
author M. Hajjari
H. Abdollahzadeh Ahangar
R. Khoeilar
Z. Shao
S. M. Sheikholeslami
author_facet M. Hajjari
H. Abdollahzadeh Ahangar
R. Khoeilar
Z. Shao
S. M. Sheikholeslami
author_sort M. Hajjari
collection DOAJ
description In this paper, we derive sharp upper and lower bounds on the sum γ3RG+γ3RG¯ and product γ3RGγ3RG¯, where G¯ is the complement of graph G. We also show that for each tree T of order n≥2, γ3RT≤3n+sT/2 and γ3RT≥⌈4nT+2−ℓT/3⌉, where sT and ℓT are the number of support vertices and leaves of T.
format Article
id doaj-art-f14fdd14c3c644aabcb5e873a29e18dd
institution Kabale University
issn 2314-4785
language English
publishDate 2022-01-01
publisher Wiley
record_format Article
series Journal of Mathematics
spelling doaj-art-f14fdd14c3c644aabcb5e873a29e18dd2025-02-03T06:41:59ZengWileyJournal of Mathematics2314-47852022-01-01202210.1155/2022/9992618New Bounds on the Triple Roman Domination Number of GraphsM. Hajjari0H. Abdollahzadeh Ahangar1R. Khoeilar2Z. Shao3S. M. Sheikholeslami4Department of MathematicsDepartment of MathematicsDepartment of MathematicsInstitute of Computing Science and TechnologyDepartment of MathematicsIn this paper, we derive sharp upper and lower bounds on the sum γ3RG+γ3RG¯ and product γ3RGγ3RG¯, where G¯ is the complement of graph G. We also show that for each tree T of order n≥2, γ3RT≤3n+sT/2 and γ3RT≥⌈4nT+2−ℓT/3⌉, where sT and ℓT are the number of support vertices and leaves of T.http://dx.doi.org/10.1155/2022/9992618
spellingShingle M. Hajjari
H. Abdollahzadeh Ahangar
R. Khoeilar
Z. Shao
S. M. Sheikholeslami
New Bounds on the Triple Roman Domination Number of Graphs
Journal of Mathematics
title New Bounds on the Triple Roman Domination Number of Graphs
title_full New Bounds on the Triple Roman Domination Number of Graphs
title_fullStr New Bounds on the Triple Roman Domination Number of Graphs
title_full_unstemmed New Bounds on the Triple Roman Domination Number of Graphs
title_short New Bounds on the Triple Roman Domination Number of Graphs
title_sort new bounds on the triple roman domination number of graphs
url http://dx.doi.org/10.1155/2022/9992618
work_keys_str_mv AT mhajjari newboundsonthetripleromandominationnumberofgraphs
AT habdollahzadehahangar newboundsonthetripleromandominationnumberofgraphs
AT rkhoeilar newboundsonthetripleromandominationnumberofgraphs
AT zshao newboundsonthetripleromandominationnumberofgraphs
AT smsheikholeslami newboundsonthetripleromandominationnumberofgraphs