Bifurcation Analysis and Single Traveling Wave Solutions of the Variable-Coefficient Davey–Stewartson System

This paper mainly studies the bifurcation and single traveling wave solutions of the variable-coefficient Davey–Stewartson system. By employing the traveling wave transformation, the variable-coefficient Davey–Stewartson system is reduced to two-dimensional nonlinear ordinary differential equations....

Full description

Saved in:
Bibliographic Details
Main Authors: Tianyong Han, Jiajin Wen, Zhao Li
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2022/9230723
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper mainly studies the bifurcation and single traveling wave solutions of the variable-coefficient Davey–Stewartson system. By employing the traveling wave transformation, the variable-coefficient Davey–Stewartson system is reduced to two-dimensional nonlinear ordinary differential equations. On the one hand, we use the bifurcation theory of planar dynamical systems to draw the phase diagram of the variable-coefficient Davey–Stewartson system. On the other hand, we use the polynomial complete discriminant method to obtain the exact traveling wave solution of the variable-coefficient Davey–Stewartson system.
ISSN:1607-887X