Secrecy-Constrained UAV-Mounted RIS-Assisted ISAC Networks: Position Optimization and Power Beamforming

This paper investigates secrecy solutions for integrated sensing and communication (ISAC) systems, leveraging the combination of a reflecting intelligent surface (RIS) and an unmanned aerial vehicle (UAV) to introduce new degrees of freedom for enhanced system performance. Specifically, we propose a...

Full description

Saved in:
Bibliographic Details
Main Authors: Weichao Yang, Yajing Wang, Dawei Wang, Yixin He, Li Li
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Drones
Subjects:
Online Access:https://www.mdpi.com/2504-446X/9/1/51
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper investigates secrecy solutions for integrated sensing and communication (ISAC) systems, leveraging the combination of a reflecting intelligent surface (RIS) and an unmanned aerial vehicle (UAV) to introduce new degrees of freedom for enhanced system performance. Specifically, we propose a secure ISAC system supported by a UAV-mounted RIS, where an ISAC base station (BS) facilitates secure multi-user communication while simultaneously detecting potentially malicious radar targets. Our goal is to improve parameter estimation performance, measured by the Cramér–Rao bound (CRB), by jointly optimizing the UAV position, transmit beamforming, and RIS beamforming, subject to constraints including the UAV flight area, communication users’ quality of service (QoS) requirements, secure transmission demands, power budget, and RIS reflecting coefficient limits. To address this non-convex, multivariate, and coupled problem, we decompose it into three subproblems, which are solved iteratively using particle swarm optimization (PSO), semi-definite relaxation (SDR), majorization–minimization (MM), and alternating direction method of multipliers (ADMM) algorithms. Our numerical results validate the effectiveness of the proposed scheme and demonstrate the potential of employing UAV-mounted RIS in ISAC systems to enhance radar sensing capabilities.
ISSN:2504-446X