Dynamics of epidemic models with asymptomatic infection and seasonal succession

In this paper, we consider a compartmental SIRS epidemic model with asymptomatic infection and seasonal succession, which is a periodic discontinuous differential system. The basic reproduction number $\mathcal{R}_0$ is defined and evaluated directly for this model, and uniform persistence of the di...

Full description

Saved in:
Bibliographic Details
Main Authors: Yilei Tang, Dongmei Xiao, Weinian Zhang, Di Zhu
Format: Article
Language:English
Published: AIMS Press 2017-09-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2017073
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we consider a compartmental SIRS epidemic model with asymptomatic infection and seasonal succession, which is a periodic discontinuous differential system. The basic reproduction number $\mathcal{R}_0$ is defined and evaluated directly for this model, and uniform persistence of the disease and threshold dynamics are obtained. Specially, global dynamics of the model without seasonal force are studied. It is shown that the model has only a disease-free equilibrium which is globally stable if $\mathcal{R}_0≤ 1$, and as $\mathcal{R}_0 \gt 1$ the disease-free equilibrium is unstable and there is an endemic equilibrium, which is globally stable if the recovering rates of asymptomatic infectives and symptomatic infectives are close. These theoretical results provide an intuitive basis for understanding that the asymptomatically infective individuals and the seasonal disease transmission promote the evolution of the epidemic, which allow us to predict the outcomes of control strategies during the course of the epidemic.
ISSN:1551-0018