Model Parametrization-Based Genetic Algorithms Using Velocity Signal and Steady State of the Dynamic Response of a Motor

The study of dynamic models and their parameterization remains a relevant topic in research. Motors and their models have been extensively analyzed, studied, and parameterized using various techniques due to their broad applicability in motorering and industrial settings. However, most methods for o...

Full description

Saved in:
Bibliographic Details
Main Authors: Mayra Cruz-Fernández, J. T. López-Maldonado, Omar Rodriguez-Abreo, Alondra Anahí Ortiz Verdín, J. Iván Amezcua Tinajero, Idalberto Macías-Socarrás, Juvenal Rodríguez-Reséndiz
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Biomimetics
Subjects:
Online Access:https://www.mdpi.com/2313-7673/10/3/146
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850089580578996224
author Mayra Cruz-Fernández
J. T. López-Maldonado
Omar Rodriguez-Abreo
Alondra Anahí Ortiz Verdín
J. Iván Amezcua Tinajero
Idalberto Macías-Socarrás
Juvenal Rodríguez-Reséndiz
author_facet Mayra Cruz-Fernández
J. T. López-Maldonado
Omar Rodriguez-Abreo
Alondra Anahí Ortiz Verdín
J. Iván Amezcua Tinajero
Idalberto Macías-Socarrás
Juvenal Rodríguez-Reséndiz
author_sort Mayra Cruz-Fernández
collection DOAJ
description The study of dynamic models and their parameterization remains a relevant topic in research. Motors and their models have been extensively analyzed, studied, and parameterized using various techniques due to their broad applicability in motorering and industrial settings. However, most methods for obtaining model parameters require at least two averaged signals from the motor, such as torque, current, speed, position, or acceleration. In this work, we propose the parameterization of a motor’s dynamic model using only the speed signal and the steady-state values of the variables. Through evolutionary computation, the mechanical and electrical equations of the motor are reconstructed based on this signal. This approach offers a significant advantage, as it enables parameter estimation without requiring the instrumentation needed for full current signal measurement or, alternatively, torque measurement. To achieve this, the transfer function representing the motor’s speed is utilized. The function reconstruction is performed with a Root Mean Square Error (RMSE) of less than 1% for both the speed and current signals. Since the original current signal is not required for this estimation, this work presents an innovative approach to estimating a system of dynamic equations using only a single measured variable and the dynamic relationships of its step-input response.
format Article
id doaj-art-f03b8cb64d8342c3a3a525bd74805156
institution DOAJ
issn 2313-7673
language English
publishDate 2025-02-01
publisher MDPI AG
record_format Article
series Biomimetics
spelling doaj-art-f03b8cb64d8342c3a3a525bd748051562025-08-20T02:42:45ZengMDPI AGBiomimetics2313-76732025-02-0110314610.3390/biomimetics10030146Model Parametrization-Based Genetic Algorithms Using Velocity Signal and Steady State of the Dynamic Response of a MotorMayra Cruz-Fernández0J. T. López-Maldonado1Omar Rodriguez-Abreo2Alondra Anahí Ortiz Verdín3J. Iván Amezcua Tinajero4Idalberto Macías-Socarrás5Juvenal Rodríguez-Reséndiz6Division de Tecnologías Industriales, Universidad Politécnica de Querétaro, Santiago de Querétaro 76240, MexicoDivision de Tecnologías Industriales, Universidad Politécnica de Querétaro, Santiago de Querétaro 76240, MexicoDivision de Tecnologías Industriales, Universidad Politécnica de Querétaro, Santiago de Querétaro 76240, MexicoDivision de Tecnologías Industriales, Universidad Politécnica de Querétaro, Santiago de Querétaro 76240, MexicoDivision de Tecnologías Industriales, Universidad Politécnica de Querétaro, Santiago de Querétaro 76240, MexicoFacultad de Ciencias Agrarias, Universidad Estatal Península de Santa Elena, Santa Elena (UPSE), Libertad 240204, EcuadorEscuela de Ingeniería, Universidad Anahuac de Querétaro, Querétaro 76246, MexicoThe study of dynamic models and their parameterization remains a relevant topic in research. Motors and their models have been extensively analyzed, studied, and parameterized using various techniques due to their broad applicability in motorering and industrial settings. However, most methods for obtaining model parameters require at least two averaged signals from the motor, such as torque, current, speed, position, or acceleration. In this work, we propose the parameterization of a motor’s dynamic model using only the speed signal and the steady-state values of the variables. Through evolutionary computation, the mechanical and electrical equations of the motor are reconstructed based on this signal. This approach offers a significant advantage, as it enables parameter estimation without requiring the instrumentation needed for full current signal measurement or, alternatively, torque measurement. To achieve this, the transfer function representing the motor’s speed is utilized. The function reconstruction is performed with a Root Mean Square Error (RMSE) of less than 1% for both the speed and current signals. Since the original current signal is not required for this estimation, this work presents an innovative approach to estimating a system of dynamic equations using only a single measured variable and the dynamic relationships of its step-input response.https://www.mdpi.com/2313-7673/10/3/146genetic algorithmsdynamic modelaritficial inteligenceparameter estimation
spellingShingle Mayra Cruz-Fernández
J. T. López-Maldonado
Omar Rodriguez-Abreo
Alondra Anahí Ortiz Verdín
J. Iván Amezcua Tinajero
Idalberto Macías-Socarrás
Juvenal Rodríguez-Reséndiz
Model Parametrization-Based Genetic Algorithms Using Velocity Signal and Steady State of the Dynamic Response of a Motor
Biomimetics
genetic algorithms
dynamic model
aritficial inteligence
parameter estimation
title Model Parametrization-Based Genetic Algorithms Using Velocity Signal and Steady State of the Dynamic Response of a Motor
title_full Model Parametrization-Based Genetic Algorithms Using Velocity Signal and Steady State of the Dynamic Response of a Motor
title_fullStr Model Parametrization-Based Genetic Algorithms Using Velocity Signal and Steady State of the Dynamic Response of a Motor
title_full_unstemmed Model Parametrization-Based Genetic Algorithms Using Velocity Signal and Steady State of the Dynamic Response of a Motor
title_short Model Parametrization-Based Genetic Algorithms Using Velocity Signal and Steady State of the Dynamic Response of a Motor
title_sort model parametrization based genetic algorithms using velocity signal and steady state of the dynamic response of a motor
topic genetic algorithms
dynamic model
aritficial inteligence
parameter estimation
url https://www.mdpi.com/2313-7673/10/3/146
work_keys_str_mv AT mayracruzfernandez modelparametrizationbasedgeneticalgorithmsusingvelocitysignalandsteadystateofthedynamicresponseofamotor
AT jtlopezmaldonado modelparametrizationbasedgeneticalgorithmsusingvelocitysignalandsteadystateofthedynamicresponseofamotor
AT omarrodriguezabreo modelparametrizationbasedgeneticalgorithmsusingvelocitysignalandsteadystateofthedynamicresponseofamotor
AT alondraanahiortizverdin modelparametrizationbasedgeneticalgorithmsusingvelocitysignalandsteadystateofthedynamicresponseofamotor
AT jivanamezcuatinajero modelparametrizationbasedgeneticalgorithmsusingvelocitysignalandsteadystateofthedynamicresponseofamotor
AT idalbertomaciassocarras modelparametrizationbasedgeneticalgorithmsusingvelocitysignalandsteadystateofthedynamicresponseofamotor
AT juvenalrodriguezresendiz modelparametrizationbasedgeneticalgorithmsusingvelocitysignalandsteadystateofthedynamicresponseofamotor