Existence of Concave Positive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation with p-Laplacian Operator
We consider the existence and multiplicity of concave positive solutions for boundary value problem of nonlinear fractional differential equation with p-Laplacian operator D0+γ(ϕp(D0+αu(t)))+f(t,u(t),D0+ρu(t))=0, 0<t<1, u(0)=u′(1)=0, u′′(0)=0, D0+αu(t)|t=0=0, where 0<γ<1, 2<α<3, 0...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2010-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/2010/495138 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the existence and multiplicity of concave positive solutions for boundary value problem of nonlinear fractional differential equation with p-Laplacian operator D0+γ(ϕp(D0+αu(t)))+f(t,u(t),D0+ρu(t))=0, 0<t<1, u(0)=u′(1)=0, u′′(0)=0, D0+αu(t)|t=0=0, where 0<γ<1, 2<α<3, 0<ρ⩽1, D0+α denotes the Caputo derivative, and f:[0,1]×[0,+∞)×R→[0,+∞) is continuous function, ϕp(s)=|s|p-2s, p>1, (ϕp)-1=ϕq, 1/p+1/q=1. By using fixed point theorem, the results for existence and multiplicity of concave positive solutions to the above boundary value problem are obtained. Finally, an example is given to show the effectiveness of our works. |
---|---|
ISSN: | 0161-1712 1687-0425 |