Ground Deformation Characteristics Induced by Mechanized Shield Twin Tunnelling along Curved Alignments
This paper investigates the ground deformation characteristics induced by mechanized shield twin tunnelling along curved alignments by adopting the nonlinear three-dimensional (3D) finite element method (FEM). The performance of the adopted FEM is demonstrated to be satisfactory by comparing the num...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-01-01
|
Series: | Advances in Civil Engineering |
Online Access: | http://dx.doi.org/10.1155/2021/6640072 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832555017735766016 |
---|---|
author | Dangzhong Wu Kaiping Xu Panpan Guo Gang Lei Kang Cheng Xiaonan Gong |
author_facet | Dangzhong Wu Kaiping Xu Panpan Guo Gang Lei Kang Cheng Xiaonan Gong |
author_sort | Dangzhong Wu |
collection | DOAJ |
description | This paper investigates the ground deformation characteristics induced by mechanized shield twin tunnelling along curved alignments by adopting the nonlinear three-dimensional (3D) finite element method (FEM). The performance of the adopted FEM is demonstrated to be satisfactory by comparing the numerical analysis results with the field monitoring data in a typical case history and with the predicted results generated by a modified version of the Peck’s empirical Gaussian formula. It has been found that the tunnelling-induced transverse ground surface settlement troughs and the distributions of the subsurface horizontal and vertical ground displacements are mostly similar in both form and magnitude for the considered various radii of curvature of tunnel alignment including 50 m, 100 m, 150 m, 200 m, 250 m, 300 m, 400 m, and infinity (i.e., straight-line tunnel). Considering the variational characteristics of the ground deformations with the magnitude of the radius of curvature, the radius of curvature of 100 m can be regarded as a critical tunnel alignment radius of curvature controlling the transformation of the curved tunnelling-induced ground deformational behaviors. For the benefit of geotechnical engineers interested in curved tunnelling with a small radius of curvature, a discussion of the technologies for reducing the overexcavation and improving the accuracy of tunnel lining segment installation is also presented. |
format | Article |
id | doaj-art-efd4875683b5489f8dcb54712c75a1d2 |
institution | Kabale University |
issn | 1687-8086 1687-8094 |
language | English |
publishDate | 2021-01-01 |
publisher | Wiley |
record_format | Article |
series | Advances in Civil Engineering |
spelling | doaj-art-efd4875683b5489f8dcb54712c75a1d22025-02-03T05:49:50ZengWileyAdvances in Civil Engineering1687-80861687-80942021-01-01202110.1155/2021/66400726640072Ground Deformation Characteristics Induced by Mechanized Shield Twin Tunnelling along Curved AlignmentsDangzhong Wu0Kaiping Xu1Panpan Guo2Gang Lei3Kang Cheng4Xiaonan Gong5Zhejiang Zhongshui Engineering Technology Corporation Limited, Hangzhou 310000, ChinaInstitute of Hydraulics and Estuary, Hangzhou 310000, ChinaResearch Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, ChinaResearch Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, ChinaResearch Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, ChinaResearch Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, ChinaThis paper investigates the ground deformation characteristics induced by mechanized shield twin tunnelling along curved alignments by adopting the nonlinear three-dimensional (3D) finite element method (FEM). The performance of the adopted FEM is demonstrated to be satisfactory by comparing the numerical analysis results with the field monitoring data in a typical case history and with the predicted results generated by a modified version of the Peck’s empirical Gaussian formula. It has been found that the tunnelling-induced transverse ground surface settlement troughs and the distributions of the subsurface horizontal and vertical ground displacements are mostly similar in both form and magnitude for the considered various radii of curvature of tunnel alignment including 50 m, 100 m, 150 m, 200 m, 250 m, 300 m, 400 m, and infinity (i.e., straight-line tunnel). Considering the variational characteristics of the ground deformations with the magnitude of the radius of curvature, the radius of curvature of 100 m can be regarded as a critical tunnel alignment radius of curvature controlling the transformation of the curved tunnelling-induced ground deformational behaviors. For the benefit of geotechnical engineers interested in curved tunnelling with a small radius of curvature, a discussion of the technologies for reducing the overexcavation and improving the accuracy of tunnel lining segment installation is also presented.http://dx.doi.org/10.1155/2021/6640072 |
spellingShingle | Dangzhong Wu Kaiping Xu Panpan Guo Gang Lei Kang Cheng Xiaonan Gong Ground Deformation Characteristics Induced by Mechanized Shield Twin Tunnelling along Curved Alignments Advances in Civil Engineering |
title | Ground Deformation Characteristics Induced by Mechanized Shield Twin Tunnelling along Curved Alignments |
title_full | Ground Deformation Characteristics Induced by Mechanized Shield Twin Tunnelling along Curved Alignments |
title_fullStr | Ground Deformation Characteristics Induced by Mechanized Shield Twin Tunnelling along Curved Alignments |
title_full_unstemmed | Ground Deformation Characteristics Induced by Mechanized Shield Twin Tunnelling along Curved Alignments |
title_short | Ground Deformation Characteristics Induced by Mechanized Shield Twin Tunnelling along Curved Alignments |
title_sort | ground deformation characteristics induced by mechanized shield twin tunnelling along curved alignments |
url | http://dx.doi.org/10.1155/2021/6640072 |
work_keys_str_mv | AT dangzhongwu grounddeformationcharacteristicsinducedbymechanizedshieldtwintunnellingalongcurvedalignments AT kaipingxu grounddeformationcharacteristicsinducedbymechanizedshieldtwintunnellingalongcurvedalignments AT panpanguo grounddeformationcharacteristicsinducedbymechanizedshieldtwintunnellingalongcurvedalignments AT ganglei grounddeformationcharacteristicsinducedbymechanizedshieldtwintunnellingalongcurvedalignments AT kangcheng grounddeformationcharacteristicsinducedbymechanizedshieldtwintunnellingalongcurvedalignments AT xiaonangong grounddeformationcharacteristicsinducedbymechanizedshieldtwintunnellingalongcurvedalignments |