The Experimental Investigation of Hydraulic Fracture Propagation Characteristics in Glutenite Formation
Hydraulic fracture propagation characteristics in glutenite formation are studied by a series of servo-controlled triaxial large-scale fracturing experiments. The experimental results show that the fractures extend along the gravel and sandstone cementing face, and fracture geometry in glutenite for...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2015-01-01
|
Series: | Advances in Materials Science and Engineering |
Online Access: | http://dx.doi.org/10.1155/2015/521480 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hydraulic fracture propagation characteristics in glutenite formation are studied by a series of servo-controlled triaxial large-scale fracturing experiments. The experimental results show that the fractures extend along the gravel and sandstone cementing face, and fracture geometry in glutenite formation is complex, which is similar to network fractures. The phenomenon of the gravel being split has not been observed. In the process of the fracture extension, the extension pressure is fluctuating, and the degree of fluctuation is more drastic with the gravel diameter increase. This paper suggests that using large rate and multislug technology would increase the flow ability of the carrying fluid. The conclusions are significant to hydraulic fracturing in glutenite formation. |
---|---|
ISSN: | 1687-8434 1687-8442 |