Shaping Ability of XP Endo Shaper File in Curved Root Canal Models
The aim of this study was to assess the shaping ability of the XP Shaper (XPS) file in severely curved canal models under simulated body temperature and compare it with that of the WaveOne Gold (WOG) file. Ninety-six simulated root canals were equally distributed into XPS and WOG systems to be shape...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | International Journal of Dentistry |
Online Access: | http://dx.doi.org/10.1155/2020/4687045 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832547746796535808 |
---|---|
author | Abdulmohsen Alfadley Abdalrhman Alrajhi Hamad Alissa Faisal Alzeghaibi Lubna Hamadah Khalid Alfouzan Ahmed Jamleh |
author_facet | Abdulmohsen Alfadley Abdalrhman Alrajhi Hamad Alissa Faisal Alzeghaibi Lubna Hamadah Khalid Alfouzan Ahmed Jamleh |
author_sort | Abdulmohsen Alfadley |
collection | DOAJ |
description | The aim of this study was to assess the shaping ability of the XP Shaper (XPS) file in severely curved canal models under simulated body temperature and compare it with that of the WaveOne Gold (WOG) file. Ninety-six simulated root canals were equally distributed into XPS and WOG systems to be shaped by eight files each. Files were assessed under a stereomicroscope prior to canal shaping to detect deformation if any. The canals were shaped at 35 ± 1°C using the X-Smart Plus motor. Images of the canals were obtained before and after instrumentation using a stereomicroscope to measure the amount of removed resin from both the inner and outer curvature sides at apex (0 mm) and 3 mm and 6 mm from the apex. The shaping time was calculated. The data were statistically analyzed by the independent t-test at 5% significance level. The XPS and WOG systems shaped the canals in 37.0 ± 9.5 and 62.6 ± 11.3 seconds (P<0.05), respectively. At the apex level, the amount of resin removal in both sides did not show a significant difference between the tested groups (P>0.05). At 3 mm and 6 mm levels, the WOG removed more resin than XPS at both sides (P<0.05). In XPS, deformation was observed in four files: one file after the first use, one file after the fourth use, and two files after the sixth use. In WOG, two files were deformed: one file after the fifth use and one file after the sixth use. One XPS file was fractured after the sixth use. In short, XPS and WOG files can be used in shaping severely curved canals as they showed the ability to maintain the original shape with minimal transportation. Both file systems showed signs of deformation after use with a lower number of deformed files observed in WOG throughout the experiment. |
format | Article |
id | doaj-art-efa0eb5fa1e2410e8025da35842c9fa8 |
institution | Kabale University |
issn | 1687-8728 1687-8736 |
language | English |
publishDate | 2020-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Dentistry |
spelling | doaj-art-efa0eb5fa1e2410e8025da35842c9fa82025-02-03T06:43:45ZengWileyInternational Journal of Dentistry1687-87281687-87362020-01-01202010.1155/2020/46870454687045Shaping Ability of XP Endo Shaper File in Curved Root Canal ModelsAbdulmohsen Alfadley0Abdalrhman Alrajhi1Hamad Alissa2Faisal Alzeghaibi3Lubna Hamadah4Khalid Alfouzan5Ahmed Jamleh6Restorative and Prosthetic Dental Sciences, College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, National Guard Health Affairs, Riyadh, Saudi ArabiaRestorative and Prosthetic Dental Sciences, College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, National Guard Health Affairs, Riyadh, Saudi ArabiaRestorative and Prosthetic Dental Sciences, College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, National Guard Health Affairs, Riyadh, Saudi ArabiaRestorative and Prosthetic Dental Sciences, College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, National Guard Health Affairs, Riyadh, Saudi ArabiaRestorative and Prosthetic Dental Sciences, College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, National Guard Health Affairs, Riyadh, Saudi ArabiaRestorative and Prosthetic Dental Sciences, College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, National Guard Health Affairs, Riyadh, Saudi ArabiaRestorative and Prosthetic Dental Sciences, College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, National Guard Health Affairs, Riyadh, Saudi ArabiaThe aim of this study was to assess the shaping ability of the XP Shaper (XPS) file in severely curved canal models under simulated body temperature and compare it with that of the WaveOne Gold (WOG) file. Ninety-six simulated root canals were equally distributed into XPS and WOG systems to be shaped by eight files each. Files were assessed under a stereomicroscope prior to canal shaping to detect deformation if any. The canals were shaped at 35 ± 1°C using the X-Smart Plus motor. Images of the canals were obtained before and after instrumentation using a stereomicroscope to measure the amount of removed resin from both the inner and outer curvature sides at apex (0 mm) and 3 mm and 6 mm from the apex. The shaping time was calculated. The data were statistically analyzed by the independent t-test at 5% significance level. The XPS and WOG systems shaped the canals in 37.0 ± 9.5 and 62.6 ± 11.3 seconds (P<0.05), respectively. At the apex level, the amount of resin removal in both sides did not show a significant difference between the tested groups (P>0.05). At 3 mm and 6 mm levels, the WOG removed more resin than XPS at both sides (P<0.05). In XPS, deformation was observed in four files: one file after the first use, one file after the fourth use, and two files after the sixth use. In WOG, two files were deformed: one file after the fifth use and one file after the sixth use. One XPS file was fractured after the sixth use. In short, XPS and WOG files can be used in shaping severely curved canals as they showed the ability to maintain the original shape with minimal transportation. Both file systems showed signs of deformation after use with a lower number of deformed files observed in WOG throughout the experiment.http://dx.doi.org/10.1155/2020/4687045 |
spellingShingle | Abdulmohsen Alfadley Abdalrhman Alrajhi Hamad Alissa Faisal Alzeghaibi Lubna Hamadah Khalid Alfouzan Ahmed Jamleh Shaping Ability of XP Endo Shaper File in Curved Root Canal Models International Journal of Dentistry |
title | Shaping Ability of XP Endo Shaper File in Curved Root Canal Models |
title_full | Shaping Ability of XP Endo Shaper File in Curved Root Canal Models |
title_fullStr | Shaping Ability of XP Endo Shaper File in Curved Root Canal Models |
title_full_unstemmed | Shaping Ability of XP Endo Shaper File in Curved Root Canal Models |
title_short | Shaping Ability of XP Endo Shaper File in Curved Root Canal Models |
title_sort | shaping ability of xp endo shaper file in curved root canal models |
url | http://dx.doi.org/10.1155/2020/4687045 |
work_keys_str_mv | AT abdulmohsenalfadley shapingabilityofxpendoshaperfileincurvedrootcanalmodels AT abdalrhmanalrajhi shapingabilityofxpendoshaperfileincurvedrootcanalmodels AT hamadalissa shapingabilityofxpendoshaperfileincurvedrootcanalmodels AT faisalalzeghaibi shapingabilityofxpendoshaperfileincurvedrootcanalmodels AT lubnahamadah shapingabilityofxpendoshaperfileincurvedrootcanalmodels AT khalidalfouzan shapingabilityofxpendoshaperfileincurvedrootcanalmodels AT ahmedjamleh shapingabilityofxpendoshaperfileincurvedrootcanalmodels |