Pri-DDQN: learning adaptive traffic signal control strategy through a hybrid agent

Abstract Adaptive traffic signal control is the core of the intelligent transportation system (ITS), which can effectively reduce the pressure on traffic congestion and improve travel efficiency. Methods based on deep Q-leaning network (DQN) have become the mainstream to solve single-intersection tr...

Full description

Saved in:
Bibliographic Details
Main Authors: Yanliu Zheng, Juan Luo, Han Gao, Yi Zhou, Keqin Li
Format: Article
Language:English
Published: Springer 2024-11-01
Series:Complex & Intelligent Systems
Subjects:
Online Access:https://doi.org/10.1007/s40747-024-01651-5
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Adaptive traffic signal control is the core of the intelligent transportation system (ITS), which can effectively reduce the pressure on traffic congestion and improve travel efficiency. Methods based on deep Q-leaning network (DQN) have become the mainstream to solve single-intersection traffic signal control. However, most of them neglect the important difference of samples and the dependence of traffic states, and cannot quickly respond to randomly changing traffic flows. In this paper, we propose a new single-intersection traffic signal control method (Pri-DDQN) based on reinforcement learning and model the traffic environment as a reinforcement learning environment, and the agent chooses the best action to schedule the traffic flow at the intersection based on the real-time traffic states. With the goal of minimizing the waiting time and queue length at intersections, we use double DQN to train the agent, incorporate traffic state and reward into the loss function, and update the target network parameters asynchronously, to improve the agent’s learning ability. We try to use the power function to dynamically change the exploration rate to accelerate convergence. In addition, we introduce a priority-based dynamic experience replay mechanism to increase the sampling rate of important samples. The results show that Pri-DDQN achieves better performance, compared to the best baseline, it reduces the average queue length is reduced by 13.41%, and the average waiting time by 32.33% at the intersection.
ISSN:2199-4536
2198-6053