Large-Scale Optical Switch Utilizing Multistage Cyclic Arrayed-Waveguide Gratings for Intra-Datacenter Interconnection
We develop a design method for creating a large-scale optical switch consisting of two sub-switch parts, i.e., delivery-and-coupling switches and wavelength-routing switches based on cyclic arrayed-waveguide gratings, where the available optical-power budget is optimally allocated to the two sub-swi...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IEEE
2017-01-01
|
| Series: | IEEE Photonics Journal |
| Subjects: | |
| Online Access: | https://ieeexplore.ieee.org/document/7765106/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We develop a design method for creating a large-scale optical switch consisting of two sub-switch parts, i.e., delivery-and-coupling switches and wavelength-routing switches based on cyclic arrayed-waveguide gratings, where the available optical-power budget is optimally allocated to the two sub-switches to maximize the entire switch scale. The power budget necessary for each sub-switch is quantitatively evaluated via extensive computer simulations. The simulation results show that a 1000 × 1000 switch scale can be realized when the available optical-power budget is 23 dB. The simulation results are verified via proof-of-concept experiments. |
|---|---|
| ISSN: | 1943-0655 |