Symmetry, Pulson Solution, and Conservation Laws of the Holm-Hone Equation
In this paper, we focus on the Holm-Hone equation which is a fifth-order generalization of the Camassa-Holm equation. It was shown that this equation is not integrable due to the nonexistence of a suitable Lagrangian or bi-Hamiltonian structure and negative results from Painlevé analysis and the Wah...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | Advances in Mathematical Physics |
Online Access: | http://dx.doi.org/10.1155/2019/4364108 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we focus on the Holm-Hone equation which is a fifth-order generalization of the Camassa-Holm equation. It was shown that this equation is not integrable due to the nonexistence of a suitable Lagrangian or bi-Hamiltonian structure and negative results from Painlevé analysis and the Wahlquist-Estabrook method. We mainly study its symmetry properties, travelling wave solutions, and conservation laws. The symmetry group and its one-dimensional optimal system are given. Furthermore, preliminary classifications of its symmetry reductions are investigated. Also we derive some solitary pattern solutions and nonanalytic first-order pulson solution via the ansatz-based method. Finally, some conservation laws for the fifth-order equation are presented. |
---|---|
ISSN: | 1687-9120 1687-9139 |