Enhanced Landslide Susceptibility Assessment in Western Sichuan Utilizing DCGAN-Generated Samples

The scarcity of landslide samples poses a critical challenge, impeding the broad application of machine learning techniques in landslide susceptibility assessment (LSA). To address this issue, this study introduces a novel approach leveraging a deep convolutional generative adversarial network (DCGA...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuanxin Tong, Hongxia Luo, Zili Qin, Hua Xia, Xinyao Zhou
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Land
Subjects:
Online Access:https://www.mdpi.com/2073-445X/14/1/34
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The scarcity of landslide samples poses a critical challenge, impeding the broad application of machine learning techniques in landslide susceptibility assessment (LSA). To address this issue, this study introduces a novel approach leveraging a deep convolutional generative adversarial network (DCGAN) for data augmentation aimed at enhancing the efficacy of various machine learning methods in LSA, including support vector machines (SVMs), convolutional neural networks (CNNs), and residual neural networks (ResNets). Experimental results present substantial enhancements across all three models, with accuracy improved by 2.18%, 2.57%, and 5.28%, respectively. In-depth validation based on large landslide image data demonstrates the superiority of the DCGAN-ResNet, achieving a remarkable landslide prediction accuracy of 91.31%. Consequently, the generation of supplementary samples via the DCGAN is an effective strategy for enhancing the performance of machine learning models in LSA, underscoring the promise of this methodology in advancing early landslide warning systems in western Sichuan.
ISSN:2073-445X