Wood Biomolecules as Agricultural Adjuvants for Effective Suppression of Droplet Rebound from Plant Foliage

Abstract The agrochemical run‐off associated with crop control is an unintended consequence of droplet rebound from plant foliage, which negatively affects crop performance and the environment. This is most critical in water‐based formulations delivered on plant surfaces that are typically waxy and...

Full description

Saved in:
Bibliographic Details
Main Authors: Mamata Bhattarai, Hedar Al‐Terke, Kai Liu, Zhangmin Wan, Petri Kilpeläinen, Alistair W. T. King, Alexey Khakalo, Jiayun Xu, Chunlin Xu, Robin H. A. Ras, Bruno D. Mattos, Orlando J. Rojas
Format: Article
Language:English
Published: Wiley 2025-05-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.202416686
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The agrochemical run‐off associated with crop control is an unintended consequence of droplet rebound from plant foliage, which negatively affects crop performance and the environment. This is most critical in water‐based formulations delivered on plant surfaces that are typically waxy and nonwetting. This study introduces an alternative to synthetic surfactants and high molecular weight polymers that are used as spreading agents for agrochemicals. Specifically, biopolymeric adjuvants (hemicelluloses and oligomeric lignin) extracted from wood by pressurized hot water are shown for their synergistic pinning capacity and surface activity that can effectively suppress droplet rebound from hydrophobic surfaces. Hemicellulose and lignin mixtures, alongside several model compounds, are investigated for understanding the dynamics of droplet impact and its correlation with biomacromolecule formations. The benefit of utilizing lean solutions (0.1 wt.% concentration) is highlighted for reducing droplet rebounding from leaves, outperforming synthetic systems in current use. For instance, a tenfold deposition improvement is demonstrated on citrus leaves, because of a significantly suppressed droplet roll‐off. These results establish the excellent prospects of wood extracts to improve crop performance.
ISSN:2198-3844