Quantum Statistical Effects on Warm Dark Matter and the Mass Constraint from the Cosmic Structure at Small Scales
The suppression of the small-scale matter power spectrum is a distinct feature of warm dark matter (WDM), which permits a constraint on the WDM mass from galaxy surveys. In the thermal relic WDM scenario, quantum statistical effects are not manifest. In a unified framework, we investigate the quantu...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IOP Publishing
2024-01-01
|
| Series: | The Astrophysical Journal Letters |
| Subjects: | |
| Online Access: | https://doi.org/10.3847/2041-8213/ad772c |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The suppression of the small-scale matter power spectrum is a distinct feature of warm dark matter (WDM), which permits a constraint on the WDM mass from galaxy surveys. In the thermal relic WDM scenario, quantum statistical effects are not manifest. In a unified framework, we investigate the quantum statistical effects for a fermion case with degenerate pressure and a boson case with Bose–Einstein condensation (BEC). Compared to the thermal relic case, the degenerate fermion case only slightly lowers the mass bound, while the boson case with a high initial BEC fraction (≳90%) significantly lowers it. On the other hand, the BEC fraction drops during the relativistic-to-nonrelativistic transition and completely disappears if the initial fraction is below ∼64%. Given the rising interest in resolving the late-time galaxy-scale problems with boson condensation, a question is posed on how a high initial BEC fraction can be dynamically created so that a dark matter condensed component remains today. |
|---|---|
| ISSN: | 2041-8205 |