General <mml:math display="inline"><mml:mrow><mml:mo class="MathClass-open">(</mml:mo><mml:mo class="MathClass-open">(</mml:mo><mml:mi>k</mml:mi><mml:mo class="MathClass-punc">,</mml:mo><mml:mi>p</mml:mi><mml:mo class="MathClass-close">)</mml:mo><mml:mo class="MathClass-punc">,</mml:mo><mml:mi>ψ</mml:mi><mml:mo class="MathClass-close">)</mml:mo></mml:mrow></mml:math>-Hilfer fractional integrals

The main motivation of this study is to establish a general version of the Riemann-Liouville fractional integrals with two exponential parameters kp((k,p),ψ)k(k,p),ψ((k,p),ψ)

Saved in:
Bibliographic Details
Main Authors: Bouharket Benaissa, Huseyin Budak
Format: Article
Language:English
Published: Miskolc University Press 2024-01-01
Series:Miskolc Mathematical Notes
Online Access:http://mat76.mat.uni-miskolc.hu/mnotes/article/4594
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832592256300744704
author Bouharket Benaissa
Huseyin Budak
author_facet Bouharket Benaissa
Huseyin Budak
author_sort Bouharket Benaissa
collection DOAJ
description The main motivation of this study is to establish a general version of the Riemann-Liouville fractional integrals with two exponential parameters kp((k,p),ψ)k(k,p),ψ((k,p),ψ)
format Article
id doaj-art-eeea894d68a9470b9976fdbd7cb45da7
institution Kabale University
issn 1787-2405
1787-2413
language English
publishDate 2024-01-01
publisher Miskolc University Press
record_format Article
series Miskolc Mathematical Notes
spelling doaj-art-eeea894d68a9470b9976fdbd7cb45da72025-01-21T12:00:07ZengMiskolc University PressMiskolc Mathematical Notes1787-24051787-24132024-01-0125261910.18514/MMN.2024.4594General <mml:math display="inline"><mml:mrow><mml:mo class="MathClass-open">(</mml:mo><mml:mo class="MathClass-open">(</mml:mo><mml:mi>k</mml:mi><mml:mo class="MathClass-punc">,</mml:mo><mml:mi>p</mml:mi><mml:mo class="MathClass-close">)</mml:mo><mml:mo class="MathClass-punc">,</mml:mo><mml:mi>ψ</mml:mi><mml:mo class="MathClass-close">)</mml:mo></mml:mrow></mml:math>-Hilfer fractional integralsBouharket BenaissaHuseyin BudakThe main motivation of this study is to establish a general version of the Riemann-Liouville fractional integrals with two exponential parameters kp((k,p),ψ)k(k,p),ψ((k,p),ψ)http://mat76.mat.uni-miskolc.hu/mnotes/article/4594
spellingShingle Bouharket Benaissa
Huseyin Budak
General <mml:math display="inline"><mml:mrow><mml:mo class="MathClass-open">(</mml:mo><mml:mo class="MathClass-open">(</mml:mo><mml:mi>k</mml:mi><mml:mo class="MathClass-punc">,</mml:mo><mml:mi>p</mml:mi><mml:mo class="MathClass-close">)</mml:mo><mml:mo class="MathClass-punc">,</mml:mo><mml:mi>ψ</mml:mi><mml:mo class="MathClass-close">)</mml:mo></mml:mrow></mml:math>-Hilfer fractional integrals
Miskolc Mathematical Notes
title General <mml:math display="inline"><mml:mrow><mml:mo class="MathClass-open">(</mml:mo><mml:mo class="MathClass-open">(</mml:mo><mml:mi>k</mml:mi><mml:mo class="MathClass-punc">,</mml:mo><mml:mi>p</mml:mi><mml:mo class="MathClass-close">)</mml:mo><mml:mo class="MathClass-punc">,</mml:mo><mml:mi>ψ</mml:mi><mml:mo class="MathClass-close">)</mml:mo></mml:mrow></mml:math>-Hilfer fractional integrals
title_full General <mml:math display="inline"><mml:mrow><mml:mo class="MathClass-open">(</mml:mo><mml:mo class="MathClass-open">(</mml:mo><mml:mi>k</mml:mi><mml:mo class="MathClass-punc">,</mml:mo><mml:mi>p</mml:mi><mml:mo class="MathClass-close">)</mml:mo><mml:mo class="MathClass-punc">,</mml:mo><mml:mi>ψ</mml:mi><mml:mo class="MathClass-close">)</mml:mo></mml:mrow></mml:math>-Hilfer fractional integrals
title_fullStr General <mml:math display="inline"><mml:mrow><mml:mo class="MathClass-open">(</mml:mo><mml:mo class="MathClass-open">(</mml:mo><mml:mi>k</mml:mi><mml:mo class="MathClass-punc">,</mml:mo><mml:mi>p</mml:mi><mml:mo class="MathClass-close">)</mml:mo><mml:mo class="MathClass-punc">,</mml:mo><mml:mi>ψ</mml:mi><mml:mo class="MathClass-close">)</mml:mo></mml:mrow></mml:math>-Hilfer fractional integrals
title_full_unstemmed General <mml:math display="inline"><mml:mrow><mml:mo class="MathClass-open">(</mml:mo><mml:mo class="MathClass-open">(</mml:mo><mml:mi>k</mml:mi><mml:mo class="MathClass-punc">,</mml:mo><mml:mi>p</mml:mi><mml:mo class="MathClass-close">)</mml:mo><mml:mo class="MathClass-punc">,</mml:mo><mml:mi>ψ</mml:mi><mml:mo class="MathClass-close">)</mml:mo></mml:mrow></mml:math>-Hilfer fractional integrals
title_short General <mml:math display="inline"><mml:mrow><mml:mo class="MathClass-open">(</mml:mo><mml:mo class="MathClass-open">(</mml:mo><mml:mi>k</mml:mi><mml:mo class="MathClass-punc">,</mml:mo><mml:mi>p</mml:mi><mml:mo class="MathClass-close">)</mml:mo><mml:mo class="MathClass-punc">,</mml:mo><mml:mi>ψ</mml:mi><mml:mo class="MathClass-close">)</mml:mo></mml:mrow></mml:math>-Hilfer fractional integrals
title_sort general mml math display inline mml mrow mml mo class mathclass open mml mo mml mo class mathclass open mml mo mml mi k mml mi mml mo class mathclass punc mml mo mml mi p mml mi mml mo class mathclass close mml mo mml mo class mathclass punc mml mo mml mi ψ mml mi mml mo class mathclass close mml mo mml mrow mml math hilfer fractional integrals
url http://mat76.mat.uni-miskolc.hu/mnotes/article/4594
work_keys_str_mv AT bouharketbenaissa generalmmlmathdisplayinlinemmlmrowmmlmoclassmathclassopenmmlmommlmoclassmathclassopenmmlmommlmikmmlmimmlmoclassmathclasspuncmmlmommlmipmmlmimmlmoclassmathclassclosemmlmommlmoclassmathclasspuncmmlmommlmipsmmlmimmlmoclassmathclassclosemmlmommlmrowmmlmathhil
AT huseyinbudak generalmmlmathdisplayinlinemmlmrowmmlmoclassmathclassopenmmlmommlmoclassmathclassopenmmlmommlmikmmlmimmlmoclassmathclasspuncmmlmommlmipmmlmimmlmoclassmathclassclosemmlmommlmoclassmathclasspuncmmlmommlmipsmmlmimmlmoclassmathclassclosemmlmommlmrowmmlmathhil