The Poisson equation in homogeneous Sobolev spaces

We consider Poisson's equation in an n-dimensional exterior domain G(n≥2) with a sufficiently smooth boundary. We prove that for external forces and boundary values given in certain Lq(G)-spaces there exists a solution in the homogeneous Sobolev space S2,q(G), containing functions being local i...

Full description

Saved in:
Bibliographic Details
Main Authors: Tatiana Samrowski, Werner Varnhorn
Format: Article
Language:English
Published: Wiley 2004-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171204308094
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832554467136897024
author Tatiana Samrowski
Werner Varnhorn
author_facet Tatiana Samrowski
Werner Varnhorn
author_sort Tatiana Samrowski
collection DOAJ
description We consider Poisson's equation in an n-dimensional exterior domain G(n≥2) with a sufficiently smooth boundary. We prove that for external forces and boundary values given in certain Lq(G)-spaces there exists a solution in the homogeneous Sobolev space S2,q(G), containing functions being local in Lq(G) and having second-order derivatives in Lq(G) Concerning the uniqueness of this solution we prove that the corresponding nullspace has the dimension n+1, independent of q.
format Article
id doaj-art-eebd2ad25b9d4697a9a1db71ab0103d7
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2004-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-eebd2ad25b9d4697a9a1db71ab0103d72025-02-03T05:51:36ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252004-01-012004361909192110.1155/S0161171204308094The Poisson equation in homogeneous Sobolev spacesTatiana Samrowski0Werner Varnhorn1Fachbereich 17 Mathematik/Informatik, Universität Kassel, Heinrich-Plett-Str. 40, Kassel 34109, GermanyFachbereich 17 Mathematik/Informatik, Universität Kassel, Heinrich-Plett-Str. 40, Kassel 34109, GermanyWe consider Poisson's equation in an n-dimensional exterior domain G(n≥2) with a sufficiently smooth boundary. We prove that for external forces and boundary values given in certain Lq(G)-spaces there exists a solution in the homogeneous Sobolev space S2,q(G), containing functions being local in Lq(G) and having second-order derivatives in Lq(G) Concerning the uniqueness of this solution we prove that the corresponding nullspace has the dimension n+1, independent of q.http://dx.doi.org/10.1155/S0161171204308094
spellingShingle Tatiana Samrowski
Werner Varnhorn
The Poisson equation in homogeneous Sobolev spaces
International Journal of Mathematics and Mathematical Sciences
title The Poisson equation in homogeneous Sobolev spaces
title_full The Poisson equation in homogeneous Sobolev spaces
title_fullStr The Poisson equation in homogeneous Sobolev spaces
title_full_unstemmed The Poisson equation in homogeneous Sobolev spaces
title_short The Poisson equation in homogeneous Sobolev spaces
title_sort poisson equation in homogeneous sobolev spaces
url http://dx.doi.org/10.1155/S0161171204308094
work_keys_str_mv AT tatianasamrowski thepoissonequationinhomogeneoussobolevspaces
AT wernervarnhorn thepoissonequationinhomogeneoussobolevspaces
AT tatianasamrowski poissonequationinhomogeneoussobolevspaces
AT wernervarnhorn poissonequationinhomogeneoussobolevspaces