Liquid Chromatography-Tandem Mass Spectrometry Method Development and Validation for the Determination of a New Mitochondrial Antioxidant in Mouse Liver and Cerebellum, Employing Advanced Chemometrics

Anxiety and stress-related disorders affect all ages in all geographical areas. As high anxiety and chronic stress result in the modulation of mitochondrial pathways, intensive research is being carried out on pharmaceutical interventions that alleviate pertinent symptomatology. Therefore, innovativ...

Full description

Saved in:
Bibliographic Details
Main Authors: Anthi Panara, Dimitra Biliraki, Markus Nussbaumer, Michaela D. Filiou, Nikolaos S. Thomaidis, Ioannis K. Kostakis, Evagelos Gikas
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/30/9/1900
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Anxiety and stress-related disorders affect all ages in all geographical areas. As high anxiety and chronic stress result in the modulation of mitochondrial pathways, intensive research is being carried out on pharmaceutical interventions that alleviate pertinent symptomatology. Therefore, innovative approaches being currently pursued include substances that target mitochondria bearing an antioxidant moiety. In this study, a newly synthesized antioxidant consisting of triphenylphosphine (TPP), a six-carbon alkyl spacer, and hydroxytyrosol (HT) was administered orally to mice via drinking water. Cerebellum and liver samples were collected and analyzed using ultra-high-performance liquid chromatography-tandem triple quadrupole mass spectrometry (UHPLC-MS/MS) to assess the levels of TPP-HT in the respective tissues to evaluate in vivo administration efficacy. Sample preparation included extraction with appropriate solvents and a preconcentration step to achieve the required sensitivity. Both methods were validated in terms of selectivity, linearity, accuracy, and limits of detection and quantification. Additionally, a workflow for evaluating and statistically summarizing multiple fortified calibration curves was devised. TPP-HT penetrates the blood–brain barrier (BBB), with a level of 11.5 ng g<sup>−1</sup> quantified in the cerebellum, whereas a level of 4.8 ng g<sup>−1</sup> was detected in the liver, highlighting the plausibility of orally administering TPP-HT to achieve mitochondrial targeting.
ISSN:1420-3049