Bioenergetic Modeling of the Relationship Between Voltage and Electroactive Microbial Biomass Yield for Bioelectrochemical Carbon Dioxide Reduction to Methane

Optimal product synthesis in bioelectrochemical systems (BESs) requires a comprehensive understanding of the relationship between external voltage and microbial yield. While most studies assume constant growth yields or rely on empirical estimates, this study presents a novel thermodynamic model, li...

Full description

Saved in:
Bibliographic Details
Main Authors: Vafa Ahmadi, Nabin Aryal
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Fermentation
Subjects:
Online Access:https://www.mdpi.com/2311-5637/11/1/40
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588521828777984
author Vafa Ahmadi
Nabin Aryal
author_facet Vafa Ahmadi
Nabin Aryal
author_sort Vafa Ahmadi
collection DOAJ
description Optimal product synthesis in bioelectrochemical systems (BESs) requires a comprehensive understanding of the relationship between external voltage and microbial yield. While most studies assume constant growth yields or rely on empirical estimates, this study presents a novel thermodynamic model, linking anodic oxidation and cathodic carbon dioxide (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>C</mi><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula>) reduction to methane (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>C</mi><mi>H</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></semantics></math></inline-formula>) by growing microbial biofilm. Through integrating theoretical Gibbs free energy calculations, the model predicts electron and proton transfers for autotrophic methanogen and anode-respiring bacteria (ARB) growth, accounting for varying applied voltages and substrate concentrations. The findings identify an optimal applied cathodic potential of −0.3 V <i>vs</i>. the standard hydrogen electrode (SHE) for maximizing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>C</mi><mi>H</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></semantics></math></inline-formula> production under standard conditions (pH 7, 25 °C, 1 atm) regardless of ohmic losses. The model bridges the stoichiometry of anodic and cathodic biofilms, addressing research gaps in simulating anodic and cathodic biofilm growth simultaneously. Additionally, sensitivity analyses reveal that lower substrate concentrations require more negative voltages than standard condition to stimulate microbial growth. The model was validated using experimental data, demonstrating reasonable predictions of biomass growth and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>C</mi><mi>H</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></semantics></math></inline-formula> yield under different operating voltages in a multi substrate system. The results show that higher voltage inputs increase biomass yield while reducing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>C</mi><mi>H</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></semantics></math></inline-formula> output due to non-optimal voltage. This validated model provides a tool for optimizing BES performance to enhance <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>C</mi><mi>H</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></semantics></math></inline-formula> recovery and biofilm stability. These insights contribute to finding optimum voltage for the highest <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>C</mi><mi>H</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></semantics></math></inline-formula> production for energy efficient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>C</mi><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> reduction for scaling up BES technology.
format Article
id doaj-art-ee967ec5878c4887b7de9a160d2c8812
institution Kabale University
issn 2311-5637
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Fermentation
spelling doaj-art-ee967ec5878c4887b7de9a160d2c88122025-01-24T13:32:10ZengMDPI AGFermentation2311-56372025-01-011114010.3390/fermentation11010040Bioenergetic Modeling of the Relationship Between Voltage and Electroactive Microbial Biomass Yield for Bioelectrochemical Carbon Dioxide Reduction to MethaneVafa Ahmadi0Nabin Aryal1Department of Process, Energy and Maritime, University of Southeastern Norway, Kjølnes Ring 56, 3918 Porsgrunn, NorwayDepartment of Process, Energy and Maritime, University of Southeastern Norway, Kjølnes Ring 56, 3918 Porsgrunn, NorwayOptimal product synthesis in bioelectrochemical systems (BESs) requires a comprehensive understanding of the relationship between external voltage and microbial yield. While most studies assume constant growth yields or rely on empirical estimates, this study presents a novel thermodynamic model, linking anodic oxidation and cathodic carbon dioxide (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>C</mi><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula>) reduction to methane (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>C</mi><mi>H</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></semantics></math></inline-formula>) by growing microbial biofilm. Through integrating theoretical Gibbs free energy calculations, the model predicts electron and proton transfers for autotrophic methanogen and anode-respiring bacteria (ARB) growth, accounting for varying applied voltages and substrate concentrations. The findings identify an optimal applied cathodic potential of −0.3 V <i>vs</i>. the standard hydrogen electrode (SHE) for maximizing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>C</mi><mi>H</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></semantics></math></inline-formula> production under standard conditions (pH 7, 25 °C, 1 atm) regardless of ohmic losses. The model bridges the stoichiometry of anodic and cathodic biofilms, addressing research gaps in simulating anodic and cathodic biofilm growth simultaneously. Additionally, sensitivity analyses reveal that lower substrate concentrations require more negative voltages than standard condition to stimulate microbial growth. The model was validated using experimental data, demonstrating reasonable predictions of biomass growth and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>C</mi><mi>H</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></semantics></math></inline-formula> yield under different operating voltages in a multi substrate system. The results show that higher voltage inputs increase biomass yield while reducing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>C</mi><mi>H</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></semantics></math></inline-formula> output due to non-optimal voltage. This validated model provides a tool for optimizing BES performance to enhance <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>C</mi><mi>H</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></semantics></math></inline-formula> recovery and biofilm stability. These insights contribute to finding optimum voltage for the highest <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>C</mi><mi>H</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></semantics></math></inline-formula> production for energy efficient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>C</mi><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> reduction for scaling up BES technology.https://www.mdpi.com/2311-5637/11/1/40thermodynamic modelmicrobial yieldacetate oxidationmethane productionelectroactive biomass yield
spellingShingle Vafa Ahmadi
Nabin Aryal
Bioenergetic Modeling of the Relationship Between Voltage and Electroactive Microbial Biomass Yield for Bioelectrochemical Carbon Dioxide Reduction to Methane
Fermentation
thermodynamic model
microbial yield
acetate oxidation
methane production
electroactive biomass yield
title Bioenergetic Modeling of the Relationship Between Voltage and Electroactive Microbial Biomass Yield for Bioelectrochemical Carbon Dioxide Reduction to Methane
title_full Bioenergetic Modeling of the Relationship Between Voltage and Electroactive Microbial Biomass Yield for Bioelectrochemical Carbon Dioxide Reduction to Methane
title_fullStr Bioenergetic Modeling of the Relationship Between Voltage and Electroactive Microbial Biomass Yield for Bioelectrochemical Carbon Dioxide Reduction to Methane
title_full_unstemmed Bioenergetic Modeling of the Relationship Between Voltage and Electroactive Microbial Biomass Yield for Bioelectrochemical Carbon Dioxide Reduction to Methane
title_short Bioenergetic Modeling of the Relationship Between Voltage and Electroactive Microbial Biomass Yield for Bioelectrochemical Carbon Dioxide Reduction to Methane
title_sort bioenergetic modeling of the relationship between voltage and electroactive microbial biomass yield for bioelectrochemical carbon dioxide reduction to methane
topic thermodynamic model
microbial yield
acetate oxidation
methane production
electroactive biomass yield
url https://www.mdpi.com/2311-5637/11/1/40
work_keys_str_mv AT vafaahmadi bioenergeticmodelingoftherelationshipbetweenvoltageandelectroactivemicrobialbiomassyieldforbioelectrochemicalcarbondioxidereductiontomethane
AT nabinaryal bioenergeticmodelingoftherelationshipbetweenvoltageandelectroactivemicrobialbiomassyieldforbioelectrochemicalcarbondioxidereductiontomethane