Histidine 73 methylation coordinates β-actin plasticity in response to key environmental factors
Abstract The functional importance of the methylation of histidine 73 (H73) in actin remains unclear. Focusing on cytoplasmic β-actin, present in all mammalian cells, we use molecular dynamics simulations with a polarizable force field and adaptive sampling to examine the effects of H73 methylation....
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-03-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-57458-6 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract The functional importance of the methylation of histidine 73 (H73) in actin remains unclear. Focusing on cytoplasmic β-actin, present in all mammalian cells, we use molecular dynamics simulations with a polarizable force field and adaptive sampling to examine the effects of H73 methylation. Our results show that methylation enhances nucleotide binding cleft opening, alters allosteric pathways connecting subdomains 2 and 4 (SD2 and SD4) in G-actin, and affects backdoor openings and inorganic phosphate release in F-actin, as validated by biochemical assays. These effects depend on the nucleotide and ions interacting with the actin. Together, our findings reveal how H73 methylation regulates β-actin plasticity and integrates environmental cues. |
|---|---|
| ISSN: | 2041-1723 |