Sub-100 fs pulse generation from dispersion-managed mode-locked Er:ZBLAN fiber laser at 2.8 μm
We demonstrate the sub-100 fs pulse generation from a dispersion-managed mode-locked Er:ZBLAN fiber laser at 2.8 μm. Both numerical simulation and experiment demonstrate that stretched-pulse and dissipative soliton mode lockings coexist in the near-zero-dispersion region of a fluoride fiber laser. W...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Cambridge University Press
2024-01-01
|
| Series: | High Power Laser Science and Engineering |
| Subjects: | |
| Online Access: | https://www.cambridge.org/core/product/identifier/S2095471924000355/type/journal_article |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We demonstrate the sub-100 fs pulse generation from a dispersion-managed mode-locked Er:ZBLAN fiber laser at 2.8 μm. Both numerical simulation and experiment demonstrate that stretched-pulse and dissipative soliton mode lockings coexist in the near-zero-dispersion region of a fluoride fiber laser. With fine dispersion management, the shortest pulse of 95 fs was obtained from the stretched-pulse mode-locked Er:ZBLAN fiber laser, with an average power of 280 mW and repetition rate of 52 MHz. To the best of our knowledge, this is the shortest pulse to date directly generated from a mid-infrared mode-locked fluoride fiber laser. |
|---|---|
| ISSN: | 2095-4719 2052-3289 |