A Robust Control Scheme for a PVTOL System Subject to Wind Disturbances

In this study, a control scheme that allows performing height position regulation and stabilization for an unmanned planar vertical take-off and landing aerial vehicle, in the presence of disturbance due to wind, is presented. To this end, the backstepping procedure together with nested saturation f...

Full description

Saved in:
Bibliographic Details
Main Authors: Carlos Alejandro Merlo-Zapata, Carlos Aguilar-Ibanez, Octavio Gutiérrez-Frías, Mayra Antonio-Cruz, Celso Márquez-Sánchez, Miguel S. Suarez-Castanon
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2020/3510396
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, a control scheme that allows performing height position regulation and stabilization for an unmanned planar vertical take-off and landing aerial vehicle, in the presence of disturbance due to wind, is presented. To this end, the backstepping procedure together with nested saturation function method is used. Firstly, a convenient change of coordinates in the aerial vehicle model is carried out to dissociate the rotational dynamics from the translational one. Secondly, the backstepping procedure is applied to obtain the height position controller, allowing the reduction of the system and expressing it as an integrator chain with nonlinear disturbance. Therefore, the nested saturation function method is used to obtain a stabilizing controller for the horizontal position and roll angle. The corresponding stability analysis is conducted via the Lyapunov second method. In addition, to estimate the disturbance due to wind, an extended state observer is used. The effectiveness of the proposed control scheme is assessed through numerical simulations, from which convincing results have been obtained.
ISSN:1076-2787
1099-0526