The Ricci curvature and the normalized Ricci flow on the Stiefel manifolds $ \operatorname{SO}(n)/\operatorname{SO}(n-2) $

We proved that on every Stiefel manifold $ V_2\mathbb{R}^n\cong \operatorname{SO}(n)/\operatorname{SO}(n-2) $ with $ n\ge 3 $ the normalized Ricci flow preserves the positivity of the Ricci curvature of invariant Riemannian metrics with positive Ricci curvature. Moreover, the normalized Ricci flow e...

Full description

Saved in:
Bibliographic Details
Main Author: Nurlan A. Abiev
Format: Article
Language:English
Published: AIMS Press 2025-03-01
Series:Electronic Research Archive
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/era.2025084
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850264478641291264
author Nurlan A. Abiev
author_facet Nurlan A. Abiev
author_sort Nurlan A. Abiev
collection DOAJ
description We proved that on every Stiefel manifold $ V_2\mathbb{R}^n\cong \operatorname{SO}(n)/\operatorname{SO}(n-2) $ with $ n\ge 3 $ the normalized Ricci flow preserves the positivity of the Ricci curvature of invariant Riemannian metrics with positive Ricci curvature. Moreover, the normalized Ricci flow evolves all metrics with mixed Ricci curvature into metrics with positive Ricci curvature in finite time. From the point of view of the theory of dynamical systems, we proved that for every invariant set $ \Sigma $ of the normalized Ricci flow on $ V_2\mathbb{R}^n $ defined as $ x_1^{n-2}x_2^{n-2}x_3 = c $, $ c > 0 $, there exists a smaller invariant set $ \Sigma\cap \mathscr{R}_{+} $ for every $ n\ge 3 $, where $ \mathscr{R}_{+} $ is the domain in $ \mathbb{R}_{+}^3 $ responsible for parameters $ x_1, x_2, x_3 > 0 $ of invariant Riemannian metrics on $ V_2\mathbb{R}^n $ admitting positive Ricci curvature.
format Article
id doaj-art-ed1f7b268fea4ce8a2e18a1c7e01a50d
institution OA Journals
issn 2688-1594
language English
publishDate 2025-03-01
publisher AIMS Press
record_format Article
series Electronic Research Archive
spelling doaj-art-ed1f7b268fea4ce8a2e18a1c7e01a50d2025-08-20T01:54:41ZengAIMS PressElectronic Research Archive2688-15942025-03-013331858187410.3934/era.2025084The Ricci curvature and the normalized Ricci flow on the Stiefel manifolds $ \operatorname{SO}(n)/\operatorname{SO}(n-2) $Nurlan A. Abiev0Institute of Mathematics of NAS of the Kyrgyz Republic, Bishkek 720071, Kyrgyz RepublicWe proved that on every Stiefel manifold $ V_2\mathbb{R}^n\cong \operatorname{SO}(n)/\operatorname{SO}(n-2) $ with $ n\ge 3 $ the normalized Ricci flow preserves the positivity of the Ricci curvature of invariant Riemannian metrics with positive Ricci curvature. Moreover, the normalized Ricci flow evolves all metrics with mixed Ricci curvature into metrics with positive Ricci curvature in finite time. From the point of view of the theory of dynamical systems, we proved that for every invariant set $ \Sigma $ of the normalized Ricci flow on $ V_2\mathbb{R}^n $ defined as $ x_1^{n-2}x_2^{n-2}x_3 = c $, $ c > 0 $, there exists a smaller invariant set $ \Sigma\cap \mathscr{R}_{+} $ for every $ n\ge 3 $, where $ \mathscr{R}_{+} $ is the domain in $ \mathbb{R}_{+}^3 $ responsible for parameters $ x_1, x_2, x_3 > 0 $ of invariant Riemannian metrics on $ V_2\mathbb{R}^n $ admitting positive Ricci curvature.https://www.aimspress.com/article/doi/10.3934/era.2025084stiefel manifoldriemannian metricnormalized ricci flowricci curvaturedynamical systeminvariant setsingular point
spellingShingle Nurlan A. Abiev
The Ricci curvature and the normalized Ricci flow on the Stiefel manifolds $ \operatorname{SO}(n)/\operatorname{SO}(n-2) $
Electronic Research Archive
stiefel manifold
riemannian metric
normalized ricci flow
ricci curvature
dynamical system
invariant set
singular point
title The Ricci curvature and the normalized Ricci flow on the Stiefel manifolds $ \operatorname{SO}(n)/\operatorname{SO}(n-2) $
title_full The Ricci curvature and the normalized Ricci flow on the Stiefel manifolds $ \operatorname{SO}(n)/\operatorname{SO}(n-2) $
title_fullStr The Ricci curvature and the normalized Ricci flow on the Stiefel manifolds $ \operatorname{SO}(n)/\operatorname{SO}(n-2) $
title_full_unstemmed The Ricci curvature and the normalized Ricci flow on the Stiefel manifolds $ \operatorname{SO}(n)/\operatorname{SO}(n-2) $
title_short The Ricci curvature and the normalized Ricci flow on the Stiefel manifolds $ \operatorname{SO}(n)/\operatorname{SO}(n-2) $
title_sort ricci curvature and the normalized ricci flow on the stiefel manifolds operatorname so n operatorname so n 2
topic stiefel manifold
riemannian metric
normalized ricci flow
ricci curvature
dynamical system
invariant set
singular point
url https://www.aimspress.com/article/doi/10.3934/era.2025084
work_keys_str_mv AT nurlanaabiev thericcicurvatureandthenormalizedricciflowonthestiefelmanifoldsoperatornamesonoperatornameson2
AT nurlanaabiev riccicurvatureandthenormalizedricciflowonthestiefelmanifoldsoperatornamesonoperatornameson2