Rapid Convergence for Telegraph Systems with Periodic Boundary Conditions
The generalized quasilinearization method is applied in this paper to a telegraph system with periodic boundary conditions. We consider the case in which the forcing function F(t,x,U) satisfies the following condition: ∂n-1F(t,x,U)/∂Un-1 exists and is quasimonotone nondecreasing or nonincreasing. We...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2017-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2017/1982568 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The generalized quasilinearization method is applied in this paper to a telegraph system with periodic boundary conditions. We consider the case in which the forcing function F(t,x,U) satisfies the following condition: ∂n-1F(t,x,U)/∂Un-1 exists and is quasimonotone nondecreasing or nonincreasing. We develop nonlinear iterates of order n-1 which will be different with n being even or odd. Finally, we develop two sequences which converge to the solution of the telegraph system and the convergence is of order n. |
---|---|
ISSN: | 2314-8896 2314-8888 |