Wronskian Addition Formula and Darboux-Pöschl-Teller Potentials

For the famous Darboux-Pöschl-Teller equation, we present new wronskian representation both for the potential and the related eigenfunctions. The simplest application of this new formula is the explicit description of dynamics of the DPT potentials and the action of the KdV hierarchy. The key point...

Full description

Saved in:
Bibliographic Details
Main Authors: Pierre Gaillard, Vladimir Matveev
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Journal of Mathematics
Online Access:http://dx.doi.org/10.1155/2013/645752
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832545611765776384
author Pierre Gaillard
Vladimir Matveev
author_facet Pierre Gaillard
Vladimir Matveev
author_sort Pierre Gaillard
collection DOAJ
description For the famous Darboux-Pöschl-Teller equation, we present new wronskian representation both for the potential and the related eigenfunctions. The simplest application of this new formula is the explicit description of dynamics of the DPT potentials and the action of the KdV hierarchy. The key point of the proof is some evaluation formulas for special wronskian determinant.
format Article
id doaj-art-ecf6580ac0b444ca86282647de7671dc
institution Kabale University
issn 2314-4629
2314-4785
language English
publishDate 2013-01-01
publisher Wiley
record_format Article
series Journal of Mathematics
spelling doaj-art-ecf6580ac0b444ca86282647de7671dc2025-02-03T07:25:26ZengWileyJournal of Mathematics2314-46292314-47852013-01-01201310.1155/2013/645752645752Wronskian Addition Formula and Darboux-Pöschl-Teller PotentialsPierre Gaillard0Vladimir Matveev1Institut de Mathématiques de Bourgogne, UMR 5584 CNRS, Université de Bourgogne, Faculté des Sciences Mirande, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, FranceInstitut de Mathématiques de Bourgogne, UMR 5584 CNRS, Université de Bourgogne, Faculté des Sciences Mirande, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, FranceFor the famous Darboux-Pöschl-Teller equation, we present new wronskian representation both for the potential and the related eigenfunctions. The simplest application of this new formula is the explicit description of dynamics of the DPT potentials and the action of the KdV hierarchy. The key point of the proof is some evaluation formulas for special wronskian determinant.http://dx.doi.org/10.1155/2013/645752
spellingShingle Pierre Gaillard
Vladimir Matveev
Wronskian Addition Formula and Darboux-Pöschl-Teller Potentials
Journal of Mathematics
title Wronskian Addition Formula and Darboux-Pöschl-Teller Potentials
title_full Wronskian Addition Formula and Darboux-Pöschl-Teller Potentials
title_fullStr Wronskian Addition Formula and Darboux-Pöschl-Teller Potentials
title_full_unstemmed Wronskian Addition Formula and Darboux-Pöschl-Teller Potentials
title_short Wronskian Addition Formula and Darboux-Pöschl-Teller Potentials
title_sort wronskian addition formula and darboux poschl teller potentials
url http://dx.doi.org/10.1155/2013/645752
work_keys_str_mv AT pierregaillard wronskianadditionformulaanddarbouxposchltellerpotentials
AT vladimirmatveev wronskianadditionformulaanddarbouxposchltellerpotentials