Diethylene glycol monoethyl ether-mediated nanostructured lipid carriers enhance trans-ferulic acid delivery by Caco-2 cells superior to solid lipid nanoparticles

This work aimed to compare the performance of trans-ferulic acid-encapsulated nanostructured lipid carriers (NLCs) and solid lipid nanoparticles (SLNs) for transport by Caco-2 cells. The NLC particles (diameter: 102.6 nm) composed of Compritol® 888 ATO, ethyl oleate, Cremophor® EL, and Transcutol® P...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhang Hongyu, Guo Jingwen, Wang Zhi, Wang Na, Feng Nianping, Zhang Yongtai
Format: Article
Language:English
Published: Sciendo 2023-03-01
Series:Acta Pharmaceutica
Subjects:
Online Access:https://doi.org/10.2478/acph-2023-0009
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work aimed to compare the performance of trans-ferulic acid-encapsulated nanostructured lipid carriers (NLCs) and solid lipid nanoparticles (SLNs) for transport by Caco-2 cells. The NLC particles (diameter: 102.6 nm) composed of Compritol® 888 ATO, ethyl oleate, Cremophor® EL, and Transcutol® P were larger than the SLNs (diameter: 86.0 nm) formed without liquid lipid (ethyl oleate), and the former had a higher encapsulation efficiency for trans-ferulic acid (p < 0.05). In vitro cultured Caco-2 cell transport was used to simulate intestinal absorption, and the cellular uptake of NLCs was higher than that of SLNs (p < 0.05). Compared to SLNs, NLCs greatly enhanced trans-ferulic acid permeation through the MillicellTM membrane (p < 0.05). This work confirms that NLCs have better properties than SLNs in terms of increasing drug transport by Caco-2 cells. This helps to comprehend the approach by which NLC-mediated oral bioavailability of trans-ferulic acid is better than that mediated by SLNs, as shown in our previous report.
ISSN:1846-9558