Thermal and Mechanical Properties of Microporous Polyurethanes Modified with Reduced Graphene Oxide

Microporous polyurethanes (MPU) were modified by adding 0.25%–1.25 wt% of reduced graphene oxide (RGO). The materials were prepared without solvent via in situ polymerization. From a technological point of view, it is very important to obtain functional materials by using reacting compounds only. Th...

Full description

Saved in:
Bibliographic Details
Main Authors: Michał Strankowski, Damian Włodarczyk, Łukasz Piszczyk, Justyna Strankowska
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:International Journal of Polymer Science
Online Access:http://dx.doi.org/10.1155/2016/8070327
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Microporous polyurethanes (MPU) were modified by adding 0.25%–1.25 wt% of reduced graphene oxide (RGO). The materials were prepared without solvent via in situ polymerization. From a technological point of view, it is very important to obtain functional materials by using reacting compounds only. The thermal characteristics of obtained MPU were investigated using TGA, DSC, and DMA techniques. In comparison to nonmodified microporous polyurethane, the thermal stability and mechanical properties of the modified systems have significantly improved. The temperature corresponding to the maximum degradation rate (Tmax) for nanocomposites containing 1% and 1.25 wt% of RGO was 51°C higher than that observed for pure microporous PU system. The increase of tensile strength was also observed for matrix with the addition of 0.5 wt% RGO nanofiller.
ISSN:1687-9422
1687-9430