On the fixed points of affine nonexpansive mappings

Let K be a closed convex bounded subset of a Banach space X and let T:K→K be a continuous affine mapping. In this note, we show that (a) if T is nonexpansive then it has a fixed point, (b) if T has only one fixed point then the mapping A=(I+T)/2 is a focusing mapping; and (c) a continuous mapping S:...

Full description

Saved in:
Bibliographic Details
Main Author: Hülya Duru
Format: Article
Language:English
Published: Wiley 2001-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S016117120100638X
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let K be a closed convex bounded subset of a Banach space X and let T:K→K be a continuous affine mapping. In this note, we show that (a) if T is nonexpansive then it has a fixed point, (b) if T has only one fixed point then the mapping A=(I+T)/2 is a focusing mapping; and (c) a continuous mapping S:K→K has a fixed point if and only if, for each x∈k, ‖(An∘S)(x)−(S∘An)(x)‖→0for some strictly nonexpansive affine mapping T.
ISSN:0161-1712
1687-0425