Analysis of Robust Stability for a Class of Stochastic Systems via Output Feedback: The LMI Approach
This paper investigates the robust stability for a class of stochastic systems with both state and control inputs. The problem of the robust stability is solved via static output feedback, and we convert the problem to a constrained convex optimization problem involving linear matrix inequality (LMI...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2013-01-01
|
Series: | Journal of Function Spaces and Applications |
Online Access: | http://dx.doi.org/10.1155/2013/873578 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper investigates the robust stability for a class of stochastic systems with both state and control inputs. The problem of the robust stability is solved via static output feedback, and we convert the problem to a constrained convex optimization problem involving linear matrix inequality (LMI). We show how the proposed linear matrix inequality framework can be used to select a quadratic Lyapunov function. The control laws can be produced by assuming the stability of the systems. We verify that all controllers can robustly stabilize the corresponding system. Further, the numerical simulation results verify the theoretical analysis results. |
---|---|
ISSN: | 0972-6802 1758-4965 |