On Optimal M-Sets Related to Motzkin’s Problem

Let M be a set of positive integers. A set S of nonnegative integers is called an M‐set if a and b∈S, then a−b∉M. If S⊆0,1,…,n is an M−set with the maximal cardinality, then S is called a maximal M−set of 0,1,…,n. If S∩0,1,…,n is a maximal M−set of 0,1,…,n for all integers n≥0, then we call S an opt...

Full description

Saved in:
Bibliographic Details
Main Authors: Quan-Hui Yang, Ting Pan, Jian-Dong Wu
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Journal of Mathematics
Online Access:http://dx.doi.org/10.1155/2020/7457625
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832561185493352448
author Quan-Hui Yang
Ting Pan
Jian-Dong Wu
author_facet Quan-Hui Yang
Ting Pan
Jian-Dong Wu
author_sort Quan-Hui Yang
collection DOAJ
description Let M be a set of positive integers. A set S of nonnegative integers is called an M‐set if a and b∈S, then a−b∉M. If S⊆0,1,…,n is an M−set with the maximal cardinality, then S is called a maximal M−set of 0,1,…,n. If S∩0,1,…,n is a maximal M−set of 0,1,…,n for all integers n≥0, then we call S an optimal M−set. In this paper, we study the existence of an optimal M−set.
format Article
id doaj-art-ebff936596f14002b4b6a914fe7b0d61
institution Kabale University
issn 2314-4629
2314-4785
language English
publishDate 2020-01-01
publisher Wiley
record_format Article
series Journal of Mathematics
spelling doaj-art-ebff936596f14002b4b6a914fe7b0d612025-02-03T01:25:46ZengWileyJournal of Mathematics2314-46292314-47852020-01-01202010.1155/2020/74576257457625On Optimal M-Sets Related to Motzkin’s ProblemQuan-Hui Yang0Ting Pan1Jian-Dong Wu2School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, ChinaSchool of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, ChinaSchool of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, ChinaLet M be a set of positive integers. A set S of nonnegative integers is called an M‐set if a and b∈S, then a−b∉M. If S⊆0,1,…,n is an M−set with the maximal cardinality, then S is called a maximal M−set of 0,1,…,n. If S∩0,1,…,n is a maximal M−set of 0,1,…,n for all integers n≥0, then we call S an optimal M−set. In this paper, we study the existence of an optimal M−set.http://dx.doi.org/10.1155/2020/7457625
spellingShingle Quan-Hui Yang
Ting Pan
Jian-Dong Wu
On Optimal M-Sets Related to Motzkin’s Problem
Journal of Mathematics
title On Optimal M-Sets Related to Motzkin’s Problem
title_full On Optimal M-Sets Related to Motzkin’s Problem
title_fullStr On Optimal M-Sets Related to Motzkin’s Problem
title_full_unstemmed On Optimal M-Sets Related to Motzkin’s Problem
title_short On Optimal M-Sets Related to Motzkin’s Problem
title_sort on optimal m sets related to motzkin s problem
url http://dx.doi.org/10.1155/2020/7457625
work_keys_str_mv AT quanhuiyang onoptimalmsetsrelatedtomotzkinsproblem
AT tingpan onoptimalmsetsrelatedtomotzkinsproblem
AT jiandongwu onoptimalmsetsrelatedtomotzkinsproblem