A hybrid human fall detection method based on modified YOLOv8s and AlphaPose

Abstract To address the challenges of low detection accuracy of small objects and weak applicability of the multi-person fall action recognition applications, we propose a hybrid fall detection method based on modified YOLOv8s and AlphaPose called HFDMIA-Pose. Firstly, we use the modified Yolov8s as...

Full description

Saved in:
Bibliographic Details
Main Authors: Lei Liu, Yeguo Sun, Yinyin Li, Yihong Liu
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-86429-6
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract To address the challenges of low detection accuracy of small objects and weak applicability of the multi-person fall action recognition applications, we propose a hybrid fall detection method based on modified YOLOv8s and AlphaPose called HFDMIA-Pose. Firstly, we use the modified Yolov8s as object detector. It uses SPD-Conv to preserve small object features and adds a small object detection layer, while using BCIOU as the loss function. These methods can effectively improve the accuracy of small object detection and significantly reduce the model size. Secondly, we improve the fall recognition accuracy by introducing a hybrid fall detection algorithm based on human skeletal nodes. Lastly, we build a multi-person fall detection dataset (MPFDD) to test the model’s effectiveness in multi-person scenarios. Validated on datasets Le2i and MPFDD, our method improves accuracy by 4.30%, F1 by 4.57%, and FPS by 37.50% faster than the AlphaPose. Compared with other models, our model improves accuracy by 5.33% on average, F1 by 5.51%, and FPS by 43.05% faster on average. Therefore, HFDMIA-Pose has significantly improved performance compared to the original model and it also demonstrates strong competitiveness over other advanced human fall detection models. Furthermore, it has the advantages of high detection accuracy, fewer model size, and fast speed, which makes it more suitable for resource constrained edge environments and can meet industrial and daily scenarios.
ISSN:2045-2322