Apaf-1 is an evolutionarily conserved DNA sensor that switches the cell fate between apoptosis and inflammation

Abstract Apoptotic protease activating factor 1 (Apaf-1) was traditionally defined as a scaffold protein in mammalian cells for assembling a caspase activation platform known as the ‘apoptosome’ after its binding to cytochrome c. Although Apaf-1 structurally resembles animal NOD-like receptor (NLR)...

Full description

Saved in:
Bibliographic Details
Main Authors: Jie Ruan, Xuxia Wei, Suizhi Li, Zijian Ye, Linyi Hu, Ru Zhuang, Yange Cao, Shaozhou Wang, Shengpeng Wu, Dezhi Peng, Shangwu Chen, Shaochun Yuan, Anlong Xu
Format: Article
Language:English
Published: Nature Publishing Group 2025-01-01
Series:Cell Discovery
Online Access:https://doi.org/10.1038/s41421-024-00750-4
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Apoptotic protease activating factor 1 (Apaf-1) was traditionally defined as a scaffold protein in mammalian cells for assembling a caspase activation platform known as the ‘apoptosome’ after its binding to cytochrome c. Although Apaf-1 structurally resembles animal NOD-like receptor (NLR) and plant resistance (R) proteins, whether it is directly involved in innate immunity is still largely unknown. Here, we found that Apaf-1-like molecules from lancelets, fruit flies, mice, and humans have conserved DNA sensing functionality. Mechanistically, mammalian Apaf-1 recruits receptor-interacting protein 2 (RIP2, also known as RIPK2) via its WD40 repeat domain and promotes RIP2 oligomerization to initiate NF-κB-driven inflammation upon cytoplasmic DNA recognition. Furthermore, DNA binding of Apaf-1 determines cell fate by switching the cellular processes between intrinsic stimuli-activated apoptosis and inflammation. These findings suggest that Apaf-1 is an evolutionarily conserved DNA sensor and may serve as a cell fate checkpoint, which determines whether cells initiate inflammation or undergo apoptosis by distinct ligand binding.
ISSN:2056-5968