Performance Evaluation of FSO Communications under Sand-Dust Conditions

Sand-dust weather conditions are considered the primary challenge to free-space optical (FSO) communications. It may cause severe attenuation that is malignant to FSO link performance. This study investigates the impact of sand-dust particles on a laser signal using the radiation propagation method...

Full description

Saved in:
Bibliographic Details
Main Authors: Minghua Cao, Huiqin Wang, Yu Yao, Shanglin Hou
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2019/2046896
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sand-dust weather conditions are considered the primary challenge to free-space optical (FSO) communications. It may cause severe attenuation that is malignant to FSO link performance. This study investigates the impact of sand-dust particles on a laser signal using the radiation propagation method and the small-angle approximation method. Numerical simulation shows that in sand-dust weather conditions, the multiple scattering effect is dominant and results in signal pulse delay and pulse broadening. Furthermore, the signal attenuation follows a negative exponential distribution to the laser wavelength. Superior performance can be achieved by employing a longer wavelength laser to reduce pulse delay and mutual interference.
ISSN:1687-5869
1687-5877