A new spatiotemporal fusion model for integrating VIIRS and SDGSAT-1 Nighttime light data to generate daily SDGSAT-1 like observations

Nighttime light (NTL) data is a critical indicator for understanding social and environmental dynamics, offering unique insights into human activities after dark. However, while providing high temporal resolution, existing NTL datasets like VIIRS suffer from low spatial resolution, limiting their ca...

Full description

Saved in:
Bibliographic Details
Main Authors: Jinhu Bian, Touseef Ahmad Khan, Ainong Li, Jinping Zhao, Yi Deng, Guangbin Lei, Zhengjian Zhang, Xi Nan, Amin Naboureh, Muhib Ullah Khan
Format: Article
Language:English
Published: Taylor & Francis Group 2025-08-01
Series:International Journal of Digital Earth
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/17538947.2025.2472912
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849224332048334848
author Jinhu Bian
Touseef Ahmad Khan
Ainong Li
Jinping Zhao
Yi Deng
Guangbin Lei
Zhengjian Zhang
Xi Nan
Amin Naboureh
Muhib Ullah Khan
author_facet Jinhu Bian
Touseef Ahmad Khan
Ainong Li
Jinping Zhao
Yi Deng
Guangbin Lei
Zhengjian Zhang
Xi Nan
Amin Naboureh
Muhib Ullah Khan
author_sort Jinhu Bian
collection DOAJ
description Nighttime light (NTL) data is a critical indicator for understanding social and environmental dynamics, offering unique insights into human activities after dark. However, while providing high temporal resolution, existing NTL datasets like VIIRS suffer from low spatial resolution, limiting their capability for detailed monitoring. There is a growing demand for NTL data with high spatial and temporal resolutions (HSTR). This study proposed a new HSTR NTL data fusion model named Nighttime Light Spatiotemporal Fusion (NTLSTF). This model generated HSTR NTL radiance values similar to SDGSAT-1 by reconstructing NTL features using a combination of spectral, spatial, and temporal weighting from VIIRS and SDGSAT-1 NTL data. Results demonstrated that the predicted SDGSAT-1 images were consistent with real SDGSAT-1 observations from both visual effect and radiance prediction accuracy. The validation of results was further supported by a high Structural Similarity Index (SSIM) of 0.976, with other quantitative metrics such as Coefficient of Determination (R²), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE), with the values of 0.941, 7.701, and 17.171, respectively. The predicted daily SDGSAT-1-like NTL data for flood disaster emergency response case in Pakistan showed the application potential of the proposed model.
format Article
id doaj-art-eabd7ecad85f456c8e4f0cdb61625e5f
institution Kabale University
issn 1753-8947
1753-8955
language English
publishDate 2025-08-01
publisher Taylor & Francis Group
record_format Article
series International Journal of Digital Earth
spelling doaj-art-eabd7ecad85f456c8e4f0cdb61625e5f2025-08-25T11:31:30ZengTaylor & Francis GroupInternational Journal of Digital Earth1753-89471753-89552025-08-0118110.1080/17538947.2025.2472912A new spatiotemporal fusion model for integrating VIIRS and SDGSAT-1 Nighttime light data to generate daily SDGSAT-1 like observationsJinhu Bian0Touseef Ahmad Khan1Ainong Li2Jinping Zhao3Yi Deng4Guangbin Lei5Zhengjian Zhang6Xi Nan7Amin Naboureh8Muhib Ullah Khan9Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, People’s Republic of ChinaInstitute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, People’s Republic of ChinaInstitute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, People’s Republic of ChinaInstitute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, People’s Republic of ChinaInstitute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, People’s Republic of ChinaInstitute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, People’s Republic of ChinaInstitute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, People’s Republic of ChinaInstitute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, People’s Republic of ChinaInstitute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, People’s Republic of ChinaInstitute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, People’s Republic of ChinaNighttime light (NTL) data is a critical indicator for understanding social and environmental dynamics, offering unique insights into human activities after dark. However, while providing high temporal resolution, existing NTL datasets like VIIRS suffer from low spatial resolution, limiting their capability for detailed monitoring. There is a growing demand for NTL data with high spatial and temporal resolutions (HSTR). This study proposed a new HSTR NTL data fusion model named Nighttime Light Spatiotemporal Fusion (NTLSTF). This model generated HSTR NTL radiance values similar to SDGSAT-1 by reconstructing NTL features using a combination of spectral, spatial, and temporal weighting from VIIRS and SDGSAT-1 NTL data. Results demonstrated that the predicted SDGSAT-1 images were consistent with real SDGSAT-1 observations from both visual effect and radiance prediction accuracy. The validation of results was further supported by a high Structural Similarity Index (SSIM) of 0.976, with other quantitative metrics such as Coefficient of Determination (R²), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE), with the values of 0.941, 7.701, and 17.171, respectively. The predicted daily SDGSAT-1-like NTL data for flood disaster emergency response case in Pakistan showed the application potential of the proposed model.https://www.tandfonline.com/doi/10.1080/17538947.2025.2472912Data fusionVIIRSSDGSAT-1nighttime lightNTLSTF model
spellingShingle Jinhu Bian
Touseef Ahmad Khan
Ainong Li
Jinping Zhao
Yi Deng
Guangbin Lei
Zhengjian Zhang
Xi Nan
Amin Naboureh
Muhib Ullah Khan
A new spatiotemporal fusion model for integrating VIIRS and SDGSAT-1 Nighttime light data to generate daily SDGSAT-1 like observations
International Journal of Digital Earth
Data fusion
VIIRS
SDGSAT-1
nighttime light
NTLSTF model
title A new spatiotemporal fusion model for integrating VIIRS and SDGSAT-1 Nighttime light data to generate daily SDGSAT-1 like observations
title_full A new spatiotemporal fusion model for integrating VIIRS and SDGSAT-1 Nighttime light data to generate daily SDGSAT-1 like observations
title_fullStr A new spatiotemporal fusion model for integrating VIIRS and SDGSAT-1 Nighttime light data to generate daily SDGSAT-1 like observations
title_full_unstemmed A new spatiotemporal fusion model for integrating VIIRS and SDGSAT-1 Nighttime light data to generate daily SDGSAT-1 like observations
title_short A new spatiotemporal fusion model for integrating VIIRS and SDGSAT-1 Nighttime light data to generate daily SDGSAT-1 like observations
title_sort new spatiotemporal fusion model for integrating viirs and sdgsat 1 nighttime light data to generate daily sdgsat 1 like observations
topic Data fusion
VIIRS
SDGSAT-1
nighttime light
NTLSTF model
url https://www.tandfonline.com/doi/10.1080/17538947.2025.2472912
work_keys_str_mv AT jinhubian anewspatiotemporalfusionmodelforintegratingviirsandsdgsat1nighttimelightdatatogeneratedailysdgsat1likeobservations
AT touseefahmadkhan anewspatiotemporalfusionmodelforintegratingviirsandsdgsat1nighttimelightdatatogeneratedailysdgsat1likeobservations
AT ainongli anewspatiotemporalfusionmodelforintegratingviirsandsdgsat1nighttimelightdatatogeneratedailysdgsat1likeobservations
AT jinpingzhao anewspatiotemporalfusionmodelforintegratingviirsandsdgsat1nighttimelightdatatogeneratedailysdgsat1likeobservations
AT yideng anewspatiotemporalfusionmodelforintegratingviirsandsdgsat1nighttimelightdatatogeneratedailysdgsat1likeobservations
AT guangbinlei anewspatiotemporalfusionmodelforintegratingviirsandsdgsat1nighttimelightdatatogeneratedailysdgsat1likeobservations
AT zhengjianzhang anewspatiotemporalfusionmodelforintegratingviirsandsdgsat1nighttimelightdatatogeneratedailysdgsat1likeobservations
AT xinan anewspatiotemporalfusionmodelforintegratingviirsandsdgsat1nighttimelightdatatogeneratedailysdgsat1likeobservations
AT aminnaboureh anewspatiotemporalfusionmodelforintegratingviirsandsdgsat1nighttimelightdatatogeneratedailysdgsat1likeobservations
AT muhibullahkhan anewspatiotemporalfusionmodelforintegratingviirsandsdgsat1nighttimelightdatatogeneratedailysdgsat1likeobservations
AT jinhubian newspatiotemporalfusionmodelforintegratingviirsandsdgsat1nighttimelightdatatogeneratedailysdgsat1likeobservations
AT touseefahmadkhan newspatiotemporalfusionmodelforintegratingviirsandsdgsat1nighttimelightdatatogeneratedailysdgsat1likeobservations
AT ainongli newspatiotemporalfusionmodelforintegratingviirsandsdgsat1nighttimelightdatatogeneratedailysdgsat1likeobservations
AT jinpingzhao newspatiotemporalfusionmodelforintegratingviirsandsdgsat1nighttimelightdatatogeneratedailysdgsat1likeobservations
AT yideng newspatiotemporalfusionmodelforintegratingviirsandsdgsat1nighttimelightdatatogeneratedailysdgsat1likeobservations
AT guangbinlei newspatiotemporalfusionmodelforintegratingviirsandsdgsat1nighttimelightdatatogeneratedailysdgsat1likeobservations
AT zhengjianzhang newspatiotemporalfusionmodelforintegratingviirsandsdgsat1nighttimelightdatatogeneratedailysdgsat1likeobservations
AT xinan newspatiotemporalfusionmodelforintegratingviirsandsdgsat1nighttimelightdatatogeneratedailysdgsat1likeobservations
AT aminnaboureh newspatiotemporalfusionmodelforintegratingviirsandsdgsat1nighttimelightdatatogeneratedailysdgsat1likeobservations
AT muhibullahkhan newspatiotemporalfusionmodelforintegratingviirsandsdgsat1nighttimelightdatatogeneratedailysdgsat1likeobservations