All-optical switch exploiting Fano resonance and subwavelength light confinement
We propose and experimentally demonstrate a small-mode volume bowtie cavity design for all-optical switching applications using a waveguide-cavity structure that exploits asymmetric Fano resonance lineshapes. The bowtie cavity has a mode volume that is five times smaller than conventional (H0-type)...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
De Gruyter
2025-02-01
|
| Series: | Nanophotonics |
| Subjects: | |
| Online Access: | https://doi.org/10.1515/nanoph-2024-0644 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We propose and experimentally demonstrate a small-mode volume bowtie cavity design for all-optical switching applications using a waveguide-cavity structure that exploits asymmetric Fano resonance lineshapes. The bowtie cavity has a mode volume that is five times smaller than conventional (H0-type) photonic crystal point-defect cavities enabling higher nonlinearity and faster switching. Blue and red-detuned Fano resonant devices based on bowtie cavity designs have been fabricated and characterized. Measured linear transmission spectra have been compared to coupled-mode theory models to extract key parameters such as Q-factors. Furthermore, all-optical switching at 2.5 Gbps have been demonstrated in a wavelength-conversion experiment. |
|---|---|
| ISSN: | 2192-8614 |