Classification of the optimal rebalancing frequency for pairs trading using machine learning techniques
Selection of the optimal rebalancing frequency (ORF) is crucial for the pair trading algorithm (PTA) that periodically rebalances the allocation of two assets. This study proposes a machine learning (ML) approach to predict ORF ranges. To improve ML accuracy, pairs were categorized into three subgro...
Saved in:
Main Authors: | Mahmut Bağcı, Pınar Kaya Soylu |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2024-12-01
|
Series: | Borsa Istanbul Review |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2214845024001583 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Data-driven optimization for rebalancing shared electric scooters
by: Yanxia Guan, et al.
Published: (2024-09-01) -
Dévaluation interne, politiques structurelles et réductions des déficits publics : les réponses apportées par la « troïka » sont-elles un remède aux déséquilibres externes des pays périphériques de la zone euro ?
by: Francisco Serranito
Published: (2015-12-01) -
Mise en œuvre des tiers-lieux d’activités : de réels effets sur les conditions d’activités dans les territoires non métropolitains ?
by: Lauren Baceiredo
Published: (2023-02-01) -
Copula-based trading of cointegrated cryptocurrency Pairs
by: Masood Tadi, et al.
Published: (2025-01-01) -
Chaotic evolutionary multi-objective optimization for multivariate pair trading in tehran stock exchange: the distance approach
by: Hossein Nikoo, et al.
Published: (2024-06-01)