On a data-driven mathematical model for prostate cancer bone metastasis

Prostate cancer bone metastasis poses significant health challenges, affecting countless individuals. While treatment with the radioactive isotope radium-223 ($ ^{223} $Ra) has shown promising results, there remains room for therapy optimization. In vivo studies are crucial for optimizing radium the...

Full description

Saved in:
Bibliographic Details
Main Authors: Zholaman Bektemessov, Laurence Cherfils, Cyrille Allery, Julien Berger, Elisa Serafini, Eleonora Dondossola, Stefano Casarin
Format: Article
Language:English
Published: AIMS Press 2024-12-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.20241656
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832590784127303680
author Zholaman Bektemessov
Laurence Cherfils
Cyrille Allery
Julien Berger
Elisa Serafini
Eleonora Dondossola
Stefano Casarin
author_facet Zholaman Bektemessov
Laurence Cherfils
Cyrille Allery
Julien Berger
Elisa Serafini
Eleonora Dondossola
Stefano Casarin
author_sort Zholaman Bektemessov
collection DOAJ
description Prostate cancer bone metastasis poses significant health challenges, affecting countless individuals. While treatment with the radioactive isotope radium-223 ($ ^{223} $Ra) has shown promising results, there remains room for therapy optimization. In vivo studies are crucial for optimizing radium therapy; however, they face several roadblocks that limit their effectiveness. By integrating in vivo studies with in silico models, these obstacles can be potentially overcome. Existing computational models of tumor response to $ ^{223} $Ra are often computationally intensive. Accordingly, we here present a versatile and computationally efficient alternative solution. We developed a PDE mathematical model to simulate the effects of $ ^{223} $Ra on prostate cancer bone metastasis, analyzing mitosis and apoptosis rates based on experimental data from both control and treated groups. To build a robust and validated model, our research explored three therapeutic scenarios: no treatment, constant $ ^{223} $Ra exposure, and decay-accounting therapy, with tumor growth simulations for each case. Our findings align well with experimental evidence, demonstrating that our model effectively captures the therapeutic potential of $ ^{223} $Ra, yielding promising results that support our model as a powerful infrastructure to optimize bone metastasis treatment.
format Article
id doaj-art-ea8438190e214254b2b8717f4f0417bf
institution Kabale University
issn 2473-6988
language English
publishDate 2024-12-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj-art-ea8438190e214254b2b8717f4f0417bf2025-01-23T07:53:25ZengAIMS PressAIMS Mathematics2473-69882024-12-01912347853480510.3934/math.20241656On a data-driven mathematical model for prostate cancer bone metastasisZholaman Bektemessov0Laurence Cherfils1Cyrille Allery2Julien Berger3Elisa Serafini4Eleonora Dondossola5Stefano Casarin6Department of Mathematical and Computer Modeling, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty, 050060, KazakhstanLaboratoire des Sciences de l'Ingénieur pour l'Environnement, UMR CNRS 7356, La Rochelle Université, La Rochelle Cedex 1, F-17042, FranceLaboratoire des Sciences de l'Ingénieur pour l'Environnement, UMR CNRS 7356, La Rochelle Université, La Rochelle Cedex 1, F-17042, FranceLaboratoire des Sciences de l'Ingénieur pour l'Environnement, UMR CNRS 7356, La Rochelle Université, La Rochelle Cedex 1, F-17042, FranceLaboratoire des Sciences de l'Ingénieur pour l'Environnement, UMR CNRS 7356, La Rochelle Université, La Rochelle Cedex 1, F-17042, FranceDavid H. Koch Center for Applied Research of Genitourinary Cancers, University of Texas MD Anderson Cancer Center, Houston, TX, United StatesLaboratoire des Sciences de l'Ingénieur pour l'Environnement, UMR CNRS 7356, La Rochelle Université, La Rochelle Cedex 1, F-17042, FranceProstate cancer bone metastasis poses significant health challenges, affecting countless individuals. While treatment with the radioactive isotope radium-223 ($ ^{223} $Ra) has shown promising results, there remains room for therapy optimization. In vivo studies are crucial for optimizing radium therapy; however, they face several roadblocks that limit their effectiveness. By integrating in vivo studies with in silico models, these obstacles can be potentially overcome. Existing computational models of tumor response to $ ^{223} $Ra are often computationally intensive. Accordingly, we here present a versatile and computationally efficient alternative solution. We developed a PDE mathematical model to simulate the effects of $ ^{223} $Ra on prostate cancer bone metastasis, analyzing mitosis and apoptosis rates based on experimental data from both control and treated groups. To build a robust and validated model, our research explored three therapeutic scenarios: no treatment, constant $ ^{223} $Ra exposure, and decay-accounting therapy, with tumor growth simulations for each case. Our findings align well with experimental evidence, demonstrating that our model effectively captures the therapeutic potential of $ ^{223} $Ra, yielding promising results that support our model as a powerful infrastructure to optimize bone metastasis treatment.https://www.aimspress.com/article/doi/10.3934/math.20241656prostate cancerbone metastasistumor growthpde modelsimulationin vivo-in silico modelingparameter estimationinverse problems
spellingShingle Zholaman Bektemessov
Laurence Cherfils
Cyrille Allery
Julien Berger
Elisa Serafini
Eleonora Dondossola
Stefano Casarin
On a data-driven mathematical model for prostate cancer bone metastasis
AIMS Mathematics
prostate cancer
bone metastasis
tumor growth
pde model
simulation
in vivo-in silico modeling
parameter estimation
inverse problems
title On a data-driven mathematical model for prostate cancer bone metastasis
title_full On a data-driven mathematical model for prostate cancer bone metastasis
title_fullStr On a data-driven mathematical model for prostate cancer bone metastasis
title_full_unstemmed On a data-driven mathematical model for prostate cancer bone metastasis
title_short On a data-driven mathematical model for prostate cancer bone metastasis
title_sort on a data driven mathematical model for prostate cancer bone metastasis
topic prostate cancer
bone metastasis
tumor growth
pde model
simulation
in vivo-in silico modeling
parameter estimation
inverse problems
url https://www.aimspress.com/article/doi/10.3934/math.20241656
work_keys_str_mv AT zholamanbektemessov onadatadrivenmathematicalmodelforprostatecancerbonemetastasis
AT laurencecherfils onadatadrivenmathematicalmodelforprostatecancerbonemetastasis
AT cyrilleallery onadatadrivenmathematicalmodelforprostatecancerbonemetastasis
AT julienberger onadatadrivenmathematicalmodelforprostatecancerbonemetastasis
AT elisaserafini onadatadrivenmathematicalmodelforprostatecancerbonemetastasis
AT eleonoradondossola onadatadrivenmathematicalmodelforprostatecancerbonemetastasis
AT stefanocasarin onadatadrivenmathematicalmodelforprostatecancerbonemetastasis