Quasi‐Periodic Emissions in Saturn's Magnetosphere and Their Effects on Electrons

Abstract Investigations into quasiperiodic (QP) whistler mode emissions within Saturn's magnetosphere have uncovered distinctive characteristics of these emissions, which display a nearly periodic rising tone structure in the wave spectrogram, characterized by modulation periods of several minu...

Full description

Saved in:
Bibliographic Details
Main Authors: S. Teng, Dedong Wang, Alexander Y. Drozdov, Yuri Y. Shprits, Zeyin Wu, Y. X. Hao, Z. Yao, J. Zhang
Format: Article
Language:English
Published: Wiley 2025-01-01
Series:Geophysical Research Letters
Subjects:
Online Access:https://doi.org/10.1029/2024GL112061
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Investigations into quasiperiodic (QP) whistler mode emissions within Saturn's magnetosphere have uncovered distinctive characteristics of these emissions, which display a nearly periodic rising tone structure in the wave spectrogram, characterized by modulation periods of several minutes. These QP emissions are predominantly observed at low L‐shells around 5 and near the magnetic equator. Utilizing a quasi‐linear analysis framework, we evaluate the effects of these waves on the dynamics of energetic electrons. Our analysis suggests that these QP emissions can efficiently cause the loss of electrons within the energy range from 10 to 60 keV over a timescale of tens of minutes. By incorporating these findings into Fokker‐Planck simulations, we find minimal acceleration effects. This study is the first to examine QP emissions and their implications for energetic electron dynamics in Saturn's magnetosphere, highlighting their potentially significant contribution to the magnetospheric processes and dynamics.
ISSN:0094-8276
1944-8007