Pilot-Induced Oscillation Suppression by Using 𝐿1 Adaptive Control

Despite significant technical advances, pilot-induced oscillation (PIO) continues to occur in both flight tests and operational aircrafts. Such a phenomenon has led to significant research activities that aim to alleviate this problem. In this paper, the L1 adaptive controller has been introduced to...

Full description

Saved in:
Bibliographic Details
Main Authors: Chuan Wang, Michael Santone, Chengyu Cao
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Journal of Control Science and Engineering
Online Access:http://dx.doi.org/10.1155/2012/394791
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Despite significant technical advances, pilot-induced oscillation (PIO) continues to occur in both flight tests and operational aircrafts. Such a phenomenon has led to significant research activities that aim to alleviate this problem. In this paper, the L1 adaptive controller has been introduced to suppress the PIO, which is caused by rate limiting and pure time delay. Due to its architecture, the L1 adaptive controller will achieve a desired response with fast adaptation. The analysis of PIO and its suppression by L1 adaptive controller are presented in detail in the paper. The simulation results indicate that the L1 adaptive control is efficient in solving this kind of problem.
ISSN:1687-5249
1687-5257