LSTM-Enhanced Deep Reinforcement Learning for Robust Trajectory Tracking Control of Skid-Steer Mobile Robots Under Terra-Mechanical Constraints
Autonomous navigation in mining environments is challenged by complex wheel–terrain interaction, traction losses caused by slip dynamics, and sensor limitations. This paper investigates the effectiveness of Deep Reinforcement Learning (DRL) techniques for the trajectory tracking control of skid-stee...
Saved in:
| Main Authors: | Jose Manuel Alcayaga, Oswaldo Anibal Menéndez, Miguel Attilio Torres-Torriti, Juan Pablo Vásconez, Tito Arévalo-Ramirez, Alvaro Javier Prado Romo |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Robotics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2218-6581/14/6/74 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Robust Nonlinear Model Predictive Control for the Trajectory Tracking of Skid-Steer Mobile Manipulators with Wheel–Ground Interactions
by: Katherine Aro, et al.
Published: (2024-12-01) -
Terra, cuina i identitat
by: Jesús Contreras
Published: (2021-03-01) -
Apresentação: Terra, trabalho e conflitos
by: Paulo Pinheiro Machado, et al.
Published: (2013-04-01) -
Lutando por terra: migração, acampamentos e ocupações de terras na Amazônia paraense
by: Airton dos Reis Pereira, et al.
Published: (2025-05-01) -
Propietat econòmica i teorització de la renda de la terra
by: Keith Tribe
Published: (2021-02-01)