Electric Vehicles Charging Scheduling Strategy Based on Time Cost of Users and Spatial Load Balancing in Multiple Microgrids

In a sustainable energy system, managing the charging demand of electric vehicles (EVs) becomes increasingly critical. Uncontrolled charging behaviors of large-scale EV fleets will exacerbate loads imbalanced in a multi-microgrid (MMG). At the same time, the time cost of users will increase signific...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiaqi Zhang, Yongxiang Xia, Zhongyi Cheng, Xi Chen
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:World Electric Vehicle Journal
Subjects:
Online Access:https://www.mdpi.com/2032-6653/16/1/46
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In a sustainable energy system, managing the charging demand of electric vehicles (EVs) becomes increasingly critical. Uncontrolled charging behaviors of large-scale EV fleets will exacerbate loads imbalanced in a multi-microgrid (MMG). At the same time, the time cost of users will increase significantly. To improve users’ charging experience and ensure stable operation of the MMG, we propose a new joint scheduling strategy that considers both time cost of users and spatial load balancing among MMGs. The time cost encompasses many factors, such as traveling time, queue waiting time, and charging time. Meanwhile, spatial load balancing seeks to mitigate the impact of large-scale EV charging on MMG loads, promoting a more equitable distribution of power resources across the MMG system. Compared to the Shortest Distance Matching Strategy (SDMS) and the Time Minimum Matching Strategy (TMMS) methods, our approach improves the average peak-to-valley ratio by 9.5% and 10.2%, respectively. Similarly, compared to the Load Balancing Matching Strategy (LBMS) and the Improved Load Balancing Matching Strategy (ILBMS) methods, our approach reduces the average time cost by 31.8% and 25% while maintaining satisfactory spatial load balancing. These results demonstrate that the proposed method achieves good results in handling electric vehicle scheduling problems.
ISSN:2032-6653