miR663 Prevents Epo Inhibition Caused by TNF-Alpha in Normoxia and Hypoxia

Objective. In chronic inflammatory diseases, proinflammatory cytokines such as TNF-α are present in high amounts in the circulation and are associated with anemia in most cases. Experimental studies have shown that TNF-α inhibits the synthesis of erythropoietin (Epo), the main stimulant of hematopoi...

Full description

Saved in:
Bibliographic Details
Main Authors: Mete Ozkurt, Thomas Hellwig-Bürgel, Reinhard Depping, Selda Kadabere, Rumeysa Ozyurt, Abdullah Karadag, Nilüfer Erkasap
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:International Journal of Endocrinology
Online Access:http://dx.doi.org/10.1155/2021/3670499
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Objective. In chronic inflammatory diseases, proinflammatory cytokines such as TNF-α are present in high amounts in the circulation and are associated with anemia in most cases. Experimental studies have shown that TNF-α inhibits the synthesis of erythropoietin (Epo), the main stimulant of hematopoiesis. Our aim was to figure out which microRNAs are involved in the Epo repression by TNF-α. Methods. First, we determined the dose of TNF-α in HepG2 cells that has no cytotoxic effect by using MTT assays and that inhibits Epo synthesis by qRT-PCR and ELISA. Then, we performed the microRNA array study with TNF-α (20 ng/ml)-treated cells, and the array results were confirmed by qRT-PCR. We transfected the miR663 group with the mimic-miR663 (30 pmol) for 24 hrs; other groups were treated with a transfection reagent followed by treatment of TNF-α for 24 hrs; miR663 groups were treated with TNF-α for 24 hrs; and the control group was incubated with normal medium. We analyzed Epo mRNA levels by qRT-PCR. If mimic-miR663 prevents the Epo repression by TNF-α, more Epo-dependent UT-7 cells would survive. Therefore, we cocultured HepG2 cells with UT-7 cells. The percentage of apoptotic UT-7 cells was determined by TUNEL assays. Results. According to our array study, TNF-α significantly decreases miR663 expression. After transfection of miR663 mimics into HepG2 cells, TNF-alpha was unable to decrease Epo mRNA amounts. Furthermore, mimic-miR663 transfection resulted in a lower apoptosis rate of UT-7 cells in coculture experiments. Conclusions. miR663 is involved in Epo mRNA production and that is able to prevent or reverse the inhibitory effect of TNF-α. In our coculture study, transfecting HepG2 cells with miR663 mimics decreased the apoptosis of UT-7 cells.
ISSN:1687-8337
1687-8345