Semi-Global Polynomial Synchronization of High-Order Multiple Proportional-Delay BAM Neural Networks

This paper addresses the semi-global polynomial synchronization (SGPS) problem for a class of high-order bidirectional associative memory neural networks (HOBAMNNs) with multiple proportional delays. The time-delay-dependent semi-global polynomial stability criterion for error systems was establishe...

Full description

Saved in:
Bibliographic Details
Main Authors: Er-yong Cong, Xian Zhang, Li Zhu
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/9/1512
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper addresses the semi-global polynomial synchronization (SGPS) problem for a class of high-order bidirectional associative memory neural networks (HOBAMNNs) with multiple proportional delays. The time-delay-dependent semi-global polynomial stability criterion for error systems was established via a direct approach. The derived stability conditions are formulated as several simple inequalities that are readily solvable, facilitating direct verification using standard computational tools (e.g., YALMIP). Notably, this method can be applied to many system models with proportional delays after minor modifications. Finally, a numerical example is provided to validate the effectiveness of the theoretical results.
ISSN:2227-7390