Enhancing the Efficiency of Polymer Solar Cells by Modifying Buffer Layer with N,N-Dimethylacetamide
We modified the PEDOT:PSS anode buffer layer in P3HT:PCBM bulk heterojunction polymer solar cells by spin-coating the solvent N,N-dimethylacetamide (DMAC). This modification significantly enhanced the efficiency of the ITO/PEDOT:PSS/DMAC/P3HT:PCBM/LiF/Al solar cells. The DMAC-treated device spin-coa...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | International Journal of Photoenergy |
Online Access: | http://dx.doi.org/10.1155/2014/854749 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We modified the PEDOT:PSS anode buffer layer in P3HT:PCBM bulk heterojunction polymer solar cells by spin-coating the solvent N,N-dimethylacetamide (DMAC). This modification significantly enhanced the efficiency of the ITO/PEDOT:PSS/DMAC/P3HT:PCBM/LiF/Al solar cells. The DMAC-treated device spin-coated at 3000 rpm exhibited a power conversion efficiency (PCE) of 3.74%, a 59% improvement over that of an untreated cell. To study the mechanism of improving the conversion efficiency, we characterized many parameters, including the light and dark I-V curves, external quantum efficiency, active layer absorption spectrum, transmission spectrum of ITO:PEDOTPSS, PEDOT:PSS surface morphology, and electrical conductivity. Modifying the PEDOT:PSS film increased conductivity, making it more conducive to hole extraction and collection. Our findings suggest that modifying the anode buffer layer can improve photoelectric conversion efficiency. |
---|---|
ISSN: | 1110-662X 1687-529X |