Increasing Inhomogeneity of the Global Oceans
Abstract The ocean is inhomogeneous in hydrographic properties with diverse water masses. Yet, how this inhomogeneity has evolved in a rapidly changing climate has not been investigated. Using multiple observational and reanalysis datasets, we show that the spatial standard deviation (SSD) of the gl...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2022-06-01
|
Series: | Geophysical Research Letters |
Subjects: | |
Online Access: | https://doi.org/10.1029/2021GL097598 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract The ocean is inhomogeneous in hydrographic properties with diverse water masses. Yet, how this inhomogeneity has evolved in a rapidly changing climate has not been investigated. Using multiple observational and reanalysis datasets, we show that the spatial standard deviation (SSD) of the global ocean has increased by 1.4 ± 0.1% in temperature and 1.5 ± 0.1% in salinity since 1960. A newly defined thermohaline inhomogeneity index, a holistic measure of both temperature and salinity changes, has increased by 2.4 ± 0.1%. Climate model simulations suggest that the observed ocean inhomogeneity increase is dominated by anthropogenic forcing and projected to accelerate by 200%–300% during 2015–2100. Geographically, the rapid upper‐ocean warming at mid‐to‐low latitudes dominates the temperature inhomogeneity increase, while the increasing salinity inhomogeneity is mainly due to the amplified salinity contrast between the subtropical and subpolar latitudes. |
---|---|
ISSN: | 0094-8276 1944-8007 |