Design of an alumina forming coating for Nb-base refractory alloys

Refractory multi-principal element alloys (RMPEAs) promise to significantly enhance gas turbine engine efficiency, but their poor oxidation performance inhibits their implementation. Alumina-forming bond coat alloys can provide oxidation protection, but discovering suitable chemistries remains a cha...

Full description

Saved in:
Bibliographic Details
Main Authors: Collin S. Holgate, Carolina Frey, Melina A. Endsley, Akane Suzuki, Carlos G. Levi, Tresa M. Pollock
Format: Article
Language:English
Published: Elsevier 2025-03-01
Series:Materials & Design
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0264127525000723
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Refractory multi-principal element alloys (RMPEAs) promise to significantly enhance gas turbine engine efficiency, but their poor oxidation performance inhibits their implementation. Alumina-forming bond coat alloys can provide oxidation protection, but discovering suitable chemistries remains a challenge. We employed a design methodology that screens for alumina-formation capability using Al activity and phase constitution predictions from CalPhaD (Thermo-Calc). Alloy down-selection from approximately 7,800 alloys in the Nb-Si-Ti-Al-Hf system was conducted via analysis of calculated thermodynamic properties with number-density topology style maps. This approach is validated by creating and testing the composition Nb12Si23Ti24Al36Hf5, which forms protective alumina scales up to 1400 °C and resists pesting at 800 °C. Further, the alloy has an average coefficient of thermal expansion of ∼10.1 ppm/K, making it well matched to Nb-based refractory alloys. The methodology will be useful for the design of coatings for RMPEAs, enabling their implementation and significant efficiency benefits sooner.
ISSN:0264-1275