Theoretical and Experimental Investigation on a Novel Cavitation-Assisted Abrasive Flow Polishing Method

A novel polishing method is proposed to increase material removal rates through the acceleration of abrasive movements using micro-jets formed by spontaneous collapses of bubbles due to the cavitation in a special-shaped Venturi tube. The Venturi structure is optimized by numerical simulations. Proc...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiayu Wang, Xiaoxing Dong, Lijun Zhu, Zhenfeng Zhou
Format: Article
Language:English
Published: MDPI AG 2024-09-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/15/9/1142
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel polishing method is proposed to increase material removal rates through the acceleration of abrasive movements using micro-jets formed by spontaneous collapses of bubbles due to the cavitation in a special-shaped Venturi tube. The Venturi structure is optimized by numerical simulations. Process-related parameters for the optimal cavitation ratio are investigated for achieving maximum adaptation to polishing flat workpieces. Furthermore, this novel approach enhances processing efficiency by approximately 60% compared to traditional abrasive flow polishing. The processing method that employs cavitation bubbles within a special-shaped Venturi tube to augment the flow of abrasive particles holds significant potential for material polishing applications.
ISSN:2072-666X